論文の概要: Learning to Segment 3D Point Clouds in 2D Image Space
- arxiv url: http://arxiv.org/abs/2003.05593v4
- Date: Wed, 7 Oct 2020 23:27:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 14:05:38.446389
- Title: Learning to Segment 3D Point Clouds in 2D Image Space
- Title(参考訳): 2次元画像空間における3次元点雲のセグメンテーション
- Authors: Yecheng Lyu and Xinming Huang and Ziming Zhang
- Abstract要約: 2次元画像空間に3次元点雲を効率よく投影する方法を示す。
U-Netのような従来の2D畳み込みニューラルネットワーク(CNN)はセグメンテーションに適用できる。
- 参考スコア(独自算出の注目度): 20.119802932358333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contrast to the literature where local patterns in 3D point clouds are
captured by customized convolutional operators, in this paper we study the
problem of how to effectively and efficiently project such point clouds into a
2D image space so that traditional 2D convolutional neural networks (CNNs) such
as U-Net can be applied for segmentation. To this end, we are motivated by
graph drawing and reformulate it as an integer programming problem to learn the
topology-preserving graph-to-grid mapping for each individual point cloud. To
accelerate the computation in practice, we further propose a novel hierarchical
approximate algorithm. With the help of the Delaunay triangulation for graph
construction from point clouds and a multi-scale U-Net for segmentation, we
manage to demonstrate the state-of-the-art performance on ShapeNet and PartNet,
respectively, with significant improvement over the literature. Code is
available at https://github.com/Zhang-VISLab.
- Abstract(参考訳): 本稿では,3次元点群内の局所的なパターンをカスタマイズした畳み込み演算子で捉えた文献と対照的に,そのような点群を2次元画像空間に効果的かつ効率的に投影する方法の問題点について検討する。
この目的のために、我々はグラフ描画を整数計画問題として再構成し、各点クラウドのトポロジー保存グラフ対グリッドマッピングを学ぶ動機づけられている。
実際に計算を高速化するために,新しい階層近似アルゴリズムを提案する。
ポイントクラウドからのグラフ構築のためのdelaunay三角測量とセグメンテーションのためのマルチスケールu-netの助けを借りて、shapenetとpartnetにおける最先端のパフォーマンスをそれぞれ実証し、文献よりも大幅に改善した。
コードはhttps://github.com/Zhang-VISLabで入手できる。
関連論文リスト
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
本稿では,複数の視点から抽出した特徴の集合として,各3次元点を表す多視点クラウド(Voint Cloud)の概念を紹介する。
この新しい3次元Vointクラウド表現は、3Dポイントクラウド表現のコンパクト性と、マルチビュー表現の自然なビュー認識性を組み合わせたものである。
理論的に確立された機能を持つVointニューラルネットワーク(VointNet)をデプロイし,Voint空間の表現を学習する。
論文 参考訳(メタデータ) (2021-11-30T13:08:19Z) - TreeGCN-ED: Encoding Point Cloud using a Tree-Structured Graph Network [24.299931323012757]
この研究は、ポイントクラウドのための堅牢な埋め込みを生成するオートエンコーダベースのフレームワークを提案する。
3Dポイントクラウド補完やシングルイメージベースの3D再構成といったアプリケーションにおいて,提案フレームワークの適用性を示す。
論文 参考訳(メタデータ) (2021-10-07T03:52:56Z) - LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices [27.048998326468688]
深層畳み込みニューラルネットワーク(CNN)は、画像のセグメンテーションに際し、優れた性能を示している。
本稿では,3次元セマンティックセグメンテーションの新たなアプローチであるLatticeNetを提案する。
本稿では,本手法が最先端性能を実現する複数のデータセット上での3次元セグメント化の結果について述べる。
論文 参考訳(メタデータ) (2021-08-09T10:17:27Z) - Learning point embedding for 3D data processing [2.12121796606941]
現在の点ベース法は本質的に空間関係処理ネットワークである。
PE-Netは高次元空間における点雲の表現を学習する。
実験によると、PE-Netは複数の挑戦的なデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-07-19T00:25:28Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
グラフニューラルネットワークの一般枠組みにおける点表現と局所近傍グラフ構築の改善を提案する。
提案されたネットワークは、トレーニングの収束を高速化する。
分類のための40%のより少ないエポック。
論文 参考訳(メタデータ) (2021-03-28T21:34:59Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNetは、3Dポイントクラウドを表現するための新しいエンドツーエンドのディープラーニングフレームワークである。
不規則な3D点雲を通常の2Dカラー画像に変換する。
多視点投影とボキセル化に基づく従来の正規表現法とは異なり、提案した表現は微分可能で可逆である。
論文 参考訳(メタデータ) (2020-12-05T13:19:55Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
完全な3Dポイントクラウドを不完全なクラウドから推定することは、多くのビジョンやロボティクスアプリケーションにおいて重要な問題である。
本稿では,ポイントクラウド補完のための新しいGridding Residual Network(GRNet)を提案する。
実験結果から,提案したGRNetはShapeNet,Completion3D,KITTIベンチマークの最先端手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-06-06T02:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。