論文の概要: Time Series Forecasting Using LSTM Networks: A Symbolic Approach
- arxiv url: http://arxiv.org/abs/2003.05672v1
- Date: Thu, 12 Mar 2020 09:18:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 13:45:23.469684
- Title: Time Series Forecasting Using LSTM Networks: A Symbolic Approach
- Title(参考訳): LSTMネットワークを用いた時系列予測:シンボリックアプローチ
- Authors: Steven Elsworth and Stefan G\"uttel
- Abstract要約: 時系列予測のために、リカレントニューラルネットワークと次元還元型シンボル表現の組み合わせを提案し、適用した。
記号表現は上記の問題のいくつかを緩和し、さらに予測性能を犠牲にすることなく、より高速なトレーニングを可能にすることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods trained on raw numerical time series data exhibit
fundamental limitations such as a high sensitivity to the hyper parameters and
even to the initialization of random weights. A combination of a recurrent
neural network with a dimension-reducing symbolic representation is proposed
and applied for the purpose of time series forecasting. It is shown that the
symbolic representation can help to alleviate some of the aforementioned
problems and, in addition, might allow for faster training without sacrificing
the forecast performance.
- Abstract(参考訳): 生の数値時系列データに基づいて訓練された機械学習手法は、ハイパーパラメータに対する高感度やランダムウェイトの初期化といった基本的な制限を示す。
時系列予測のために,リカレントニューラルネットワークと次元減少象徴表現の組み合わせを提案し,応用した。
記号表現は上記の問題のいくつかを緩和し、さらに予測性能を犠牲にすることなく、より高速なトレーニングを可能にすることが示されている。
関連論文リスト
- Quantized symbolic time series approximation [0.28675177318965045]
本稿では,新しい量子化に基づくABBA記号近似手法,QABBAを提案する。
QABBAは、元の速度とシンボル再構成の精度を維持しながら、ストレージ効率を向上させる。
時系列回帰のための大規模言語モデル(LLM)を用いたQABBAの応用についても述べる。
論文 参考訳(メタデータ) (2024-11-20T10:32:22Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Learning Wave Propagation with Attention-Based Convolutional Recurrent
Autoencoder Net [0.0]
本稿では、波動伝播現象のデータ駆動モデリングのための、エンド・ツー・エンドの注意に基づく畳み込み再帰型オートエンコーダ(AB-CRAN)ネットワークを提案する。
波動伝搬に時間依存の双曲偏微分方程式で与えられる全階スナップショットから、デノナイジングに基づく畳み込みオートエンコーダを用いる。
注意に基づくシーケンス・ツー・シーケンス・ネットワークは、通常のRNN-LSTMと比較して、予測の時間-水平を5倍増加させる。
論文 参考訳(メタデータ) (2022-01-17T20:51:59Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
自己回帰的リカレントニューラルネットワークとインプリシット量子ネットワークを併用して、時系列ターゲット上の大規模な分布を学習する。
提案手法は, 時間分布の推定だけでなく, ポイントワイズ予測精度の観点からも好適である。
論文 参考訳(メタデータ) (2021-07-08T10:37:24Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
この研究は、新しいランダム化に基づく学習手法を用いたニューラル予測モデルの開発に寄与する。
時系列のパターンに基づく表現は、複数の季節の時系列を予測するのに有用である。
論文 参考訳(メタデータ) (2021-07-04T18:39:27Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
線形オートエンコーダを用いた列列の明示的暗記に基づく代替解を提案する。
このような事前学習が、長いシーケンスで難しい分類タスクを解くのにどのように役立つかを示す。
提案手法は, 長周期の復元誤差をはるかに小さくし, 微調整時の勾配伝播を良くすることを示す。
論文 参考訳(メタデータ) (2020-11-05T14:57:16Z) - Predicting Training Time Without Training [120.92623395389255]
我々は、事前訓練された深層ネットワークが損失関数の所定の値に収束する必要がある最適化ステップの数を予測する問題に取り組む。
我々は、微調整中の深部ネットワークのトレーニングダイナミクスが線形化モデルによってよく近似されているという事実を活用する。
トレーニングをする必要なく、特定の損失にモデルを微調整するのに要する時間を予測できます。
論文 参考訳(メタデータ) (2020-08-28T04:29:54Z) - A New Unified Deep Learning Approach with
Decomposition-Reconstruction-Ensemble Framework for Time Series Forecasting [15.871046608998995]
本稿では,新しい変分モード分解(VMD)に基づくディープラーニング手法を提案する。
CNNは分解したサブシグナーの再構成パターンを学習し、いくつかのサブシグナーを得る。
長い短期記憶(LSTM)ネットワークを用いて、分解されたサブシグナルと再構成されたサブシグナルを入力として時系列を予測する。
論文 参考訳(メタデータ) (2020-02-22T12:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。