論文の概要: SynCGAN: Using learnable class specific priors to generate synthetic
data for improving classifier performance on cytological images
- arxiv url: http://arxiv.org/abs/2003.05712v1
- Date: Thu, 12 Mar 2020 11:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:07:02.097152
- Title: SynCGAN: Using learnable class specific priors to generate synthetic
data for improving classifier performance on cytological images
- Title(参考訳): syncgan: learnable class specific priorsを使って合成データを生成し、サイトロジカル画像の分類性能を向上させる
- Authors: Soumyajyoti Dey, Soham Das, Swarnendu Ghosh, Shyamali Mitra, Sukanta
Chakrabarty and Nibaran Das
- Abstract要約: 注記画像に対するパスリアリスティックなサンプル生成のための条件付きGANを提案する。
我々は,提案したSynCGANを用いたデータ拡張により,ResNet-152,DenseNet-161,Inception-V3などの美術分類器の性能が大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 3.0245533608670865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most challenging aspects of medical image analysis is the lack of
a high quantity of annotated data. This makes it difficult for deep learning
algorithms to perform well due to a lack of variations in the input space.
While generative adversarial networks have shown promise in the field of
synthetic data generation, but without a carefully designed prior the
generation procedure can not be performed well. In the proposed approach we
have demonstrated the use of automatically generated segmentation masks as
learnable class-specific priors to guide a conditional GAN for the generation
of patho-realistic samples for cytology image. We have observed that
augmentation of data using the proposed pipeline called "SynCGAN" improves the
performance of state of the art classifiers such as ResNet-152, DenseNet-161,
Inception-V3 significantly.
- Abstract(参考訳): 医用画像解析の最も難しい側面の1つは、大量の注釈付きデータがないことである。
これにより、入力空間のバリエーションが不足しているため、ディープラーニングアルゴリズムの動作が困難になる。
生成的敵ネットワークは、合成データ生成の分野では期待できるが、慎重に設計されていない場合、生成手順はうまく機能しない。
提案手法では, 自動生成セグメンテーションマスクを学習可能なクラス特異的プリエントとして使用し, 細胞診画像のパスリアリスティックなサンプル生成のための条件付きGANを誘導する。
我々は,提案したSynCGANを用いたデータ拡張により,ResNet-152,DenseNet-161,Inception-V3などの美術分類器の性能が大幅に向上することを示した。
関連論文リスト
- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
病理組織像分類は様々な疾患の正確な同定と診断に重要である。
合成画像は、既存のデータセットを効果的に増強し、最終的に下流の病理組織像分類タスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-09-24T12:02:55Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - TSynD: Targeted Synthetic Data Generation for Enhanced Medical Image Classification [0.011037620731410175]
この研究は、生成モデルを誘導し、高い不確実性でデータを合成することを目的としている。
最適化プロセスによりオートエンコーダの特徴空間を変更する。
我々は,複数の分類タスクに対するテスト時間データ拡張と敵攻撃に対する堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-06-25T11:38:46Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Unified Framework for Histopathology Image Augmentation and Classification via Generative Models [6.404713841079193]
本稿では,データ生成とモデルトレーニングの段階を統一プロセスに統合する,革新的な統一フレームワークを提案する。
提案手法では、画像合成と分類の両方を同時に扱うために、純粋視覚変換器(ViT)ベースの条件付き生成適応ネットワーク(cGAN)モデルを用いる。
本実験により,我々の統合合成増強フレームワークは,病理組織像分類モデルの性能を一貫して向上させることが示された。
論文 参考訳(メタデータ) (2022-12-20T03:40:44Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learningは、目に見えないクラスから見えないクラスに意味的な知識を移すことで、目に見えないクラスと見えないクラスの両方から画像を認識することを目的としている。
生成モデルの利点を生かして、見学したクラスから学んだ知識に基づいて、現実的な見知らぬサンプルを幻覚させることは、有望な解決策である。
本研究では,複数の条件付きアフィン結合層からなるフローベース生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:04:37Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。