論文の概要: Unified Framework for Histopathology Image Augmentation and Classification via Generative Models
- arxiv url: http://arxiv.org/abs/2212.09977v2
- Date: Sun, 13 Oct 2024 08:59:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 21:41:33.213064
- Title: Unified Framework for Histopathology Image Augmentation and Classification via Generative Models
- Title(参考訳): 遺伝子モデルによる画像拡張と分類のための統一的枠組み
- Authors: Meng Li, Chaoyi Li, Can Peng, Brian C. Lovell,
- Abstract要約: 本稿では,データ生成とモデルトレーニングの段階を統一プロセスに統合する,革新的な統一フレームワークを提案する。
提案手法では、画像合成と分類の両方を同時に扱うために、純粋視覚変換器(ViT)ベースの条件付き生成適応ネットワーク(cGAN)モデルを用いる。
本実験により,我々の統合合成増強フレームワークは,病理組織像分類モデルの性能を一貫して向上させることが示された。
- 参考スコア(独自算出の注目度): 6.404713841079193
- License:
- Abstract: Deep learning techniques have become widely utilized in histopathology image classification due to their superior performance. However, this success heavily relies on the availability of substantial labeled data, which necessitates extensive and costly manual annotation by domain experts. To address this challenge, researchers have recently employed generative models to synthesize data for augmentation, thereby enhancing classification model performance. Traditionally, this involves generating synthetic data first and then training the classification model with both synthetic and real data, which creates a two-stage, time-consuming workflow. To overcome this limitation, we propose an innovative unified framework that integrates the data generation and model training stages into a unified process. Our approach utilizes a pure Vision Transformer (ViT)-based conditional Generative Adversarial Network (cGAN) model to simultaneously handle both image synthesis and classification. An additional classification head is incorporated into the cGAN model to enable simultaneous classification of histopathology images. To improve training stability and enhance the quality of generated data, we introduce a conditional class projection technique that helps maintain class separation during the generation process. We also employ a dynamic multi-loss weighting mechanism to effectively balance the losses of the classification tasks. Furthermore, our selective augmentation mechanism actively selects the most suitable generated images for data augmentation to further improve performance. Extensive experiments on histopathology datasets show that our unified synthetic augmentation framework consistently enhances the performance of histopathology image classification models.
- Abstract(参考訳): 深層学習技術は、その優れた性能のために、病理画像分類において広く活用されている。
しかし、この成功は、ドメインの専門家による広範囲でコストのかかる手作業によるアノテーションを必要とする、実質的なラベル付きデータの可用性に大きく依存している。
この課題に対処するために、研究者は最近、生成モデルを使用して、拡張のためのデータを合成し、分類モデルの性能を向上した。
伝統的に、これはまず合成データを生成し、次に合成データと実データの両方で分類モデルを訓練する。
この制限を克服するために,データ生成とモデルトレーニングの段階を統一プロセスに統合する,革新的な統一フレームワークを提案する。
提案手法では、画像合成と分類の両方を同時に扱うために、純粋視覚変換器(ViT)ベースの条件付き生成適応ネットワーク(cGAN)モデルを用いる。
新たな分類ヘッドをcGANモデルに組み込んで、病理画像の同時分類を可能にする。
学習の安定性を向上し,生成データの品質を向上させるために,生成過程におけるクラス分離の維持を支援する条件付きクラスプロジェクション技術を導入する。
また,分類タスクの損失を効果的にバランスさせるために,動的マルチロス重み付け機構を用いる。
さらに,データ拡張に最も適した生成画像を積極的に選択し,さらなる性能向上を図る。
病理組織学的データセットの大規模な実験により,我々の統合合成増強フレームワークは,画像分類モデルの性能を一貫して向上させることが示された。
関連論文リスト
- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
病理組織像分類は様々な疾患の正確な同定と診断に重要である。
合成画像は、既存のデータセットを効果的に増強し、最終的に下流の病理組織像分類タスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-09-24T12:02:55Z) - Dataset Distillation for Histopathology Image Classification [46.04496989951066]
病理画像データセット(Histo-DD)に適した新しいデータセット蒸留アルゴリズムを提案する。
提案アルゴリズムの有効性を総合的に評価し, パッチレベルとスライドレベルの両方の分類タスクにおいて, 組織学的サンプルを生成する。
論文 参考訳(メタデータ) (2024-08-19T05:53:38Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - TSynD: Targeted Synthetic Data Generation for Enhanced Medical Image Classification [0.011037620731410175]
この研究は、生成モデルを誘導し、高い不確実性でデータを合成することを目的としている。
最適化プロセスによりオートエンコーダの特徴空間を変更する。
我々は,複数の分類タスクに対するテスト時間データ拡張と敵攻撃に対する堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-06-25T11:38:46Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
我々は,GANに基づく拡張性能のデータセットサイズ依存性について,小サンプルに着目して検討した。
両方のセットでStyleGAN2-ADAをトレーニングし、生成した画像の品質を検証した後、マルチクラス分類問題における拡張アプローチの1つとしてトレーニングされたGANを使用する。
GANベースの拡張アプローチは、中規模および大規模データセットでは古典的な拡張に匹敵するが、より小さなデータセットでは不十分である。
論文 参考訳(メタデータ) (2024-01-26T08:28:13Z) - Class-Prototype Conditional Diffusion Model with Gradient Projection for Continual Learning [20.175586324567025]
破滅的な忘れ方を減らすことは、継続的な学習における重要なハードルである。
大きな問題は、生成したデータの品質がオリジナルのものと比べて低下することである。
本稿では,ジェネレータにおける画像品質を向上させる連続学習のためのGRに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-10T17:39:42Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
本稿では,画像検索を生成モデルの一種として再フレーミングする新しい手法を提案する。
我々は、イメージを意味単位の簡潔なシーケンスに変換するという技術的課題に対処するため、IRGenと呼ばれるモデルを開発した。
本モデルは,広範に使用されている3つの画像検索ベンチマークと200万件のデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-17T17:07:36Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。