Graph Learning and Its Advancements on Large Language Models: A Holistic Survey
- URL: http://arxiv.org/abs/2212.08966v5
- Date: Sat, 21 Sep 2024 13:02:52 GMT
- Title: Graph Learning and Its Advancements on Large Language Models: A Holistic Survey
- Authors: Shaopeng Wei, Jun Wang, Yu Zhao, Xingyan Chen, Qing Li, Fuzhen Zhuang, Ji Liu, Fuji Ren, Gang Kou,
- Abstract summary: This survey focuses on the most recent advancements in integrating graph learning with pre-trained language models.
We provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning.
- Score: 37.01696685233113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph learning is a prevalent domain that endeavors to learn the intricate relationships among nodes and the topological structure of graphs. Over the years, graph learning has transcended from graph theory to graph data mining. With the advent of representation learning, it has attained remarkable performance in diverse scenarios. Owing to its extensive application prospects, graph learning attracts copious attention. While some researchers have accomplished impressive surveys on graph learning, they failed to connect related objectives, methods, and applications in a more coherent way. As a result, they did not encompass current ample scenarios and challenging problems due to the rapid expansion of graph learning. Particularly, large language models have recently had a disruptive effect on human life, but they also show relative weakness in structured scenarios. The question of how to make these models more powerful with graph learning remains open. Our survey focuses on the most recent advancements in integrating graph learning with pre-trained language models, specifically emphasizing their application within the domain of large language models. Different from previous surveys on graph learning, we provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning. Specifically, we commence by proposing a taxonomy and then summarize the methods employed in graph learning. We then provide a detailed elucidation of mainstream applications. Finally, we propose future directions.
Related papers
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
We propose graph domain adaptation as an effective knowledge-transfer paradigm across graphs.
GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs.
We outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects.
arXiv Detail & Related papers (2024-02-01T02:44:32Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Lifelong Learning: A Survey [6.545297572977323]
This paper focuses on the motivations, potentials, state-of-the-art approaches, and open issues of graph lifelong learning.
We expect extensive research and development interest in this emerging field.
arXiv Detail & Related papers (2022-02-22T06:14:07Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Graph Learning: A Survey [38.245120261668816]
We present a comprehensive overview on the state-of-the-art of graph learning.
Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning.
We examine graph learning applications in areas such as text, images, science, knowledge graphs, and optimization.
arXiv Detail & Related papers (2021-05-03T09:06:01Z) - Graph Self-Supervised Learning: A Survey [73.86209411547183]
Self-supervised learning (SSL) has become a promising and trending learning paradigm for graph data.
We present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data.
arXiv Detail & Related papers (2021-02-27T03:04:21Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
arXiv Detail & Related papers (2020-03-10T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.