Symmetries in Foundation of Quantum Theory and Mathematics
- URL: http://arxiv.org/abs/2003.05736v1
- Date: Thu, 5 Mar 2020 04:46:04 GMT
- Title: Symmetries in Foundation of Quantum Theory and Mathematics
- Authors: Felix M. Lev
- Abstract summary: We consider finite quantum theory (FQT) where states are elements of a space over a finite ring or field with characteristic $p$ and operators of physical quantities act in this space.
We prove that, with the same approach to symmetry, FQT and finite mathematics are more general than standard quantum theory and classical mathematics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In standard quantum theory, symmetry is defined in the spirit of Klein's
Erlangen Program: the background space has a symmetry group, and the basic
operators should commute according to the Lie algebra of that group. We argue
that the definition should be the opposite: background space has a direct
physical meaning only on classical level while on quantum level symmetry should
be defined by a Lie algebra of basic operators. Then the fact that de Sitter
symmetry is more general than Poincare one can be proved mathematically. The
problem of explaining cosmological acceleration is very difficult but, as
follows from our results, there exists a scenario that the phenomenon of
cosmological acceleration can be explained proceeding from basic principles of
quantum theory. The explanation has nothing to do with existence or
nonexistence of dark energy and therefore the cosmological constant problem and
the dark energy problem do not arise. We consider finite quantum theory (FQT)
where states are elements of a space over a finite ring or field with
characteristic $p$ and operators of physical quantities act in this space. We
prove that, with the same approach to symmetry, FQT and finite mathematics are
more general than standard quantum theory and classical mathematics,
respectively: the latter theories are special degenerated cases of the former
ones in the formal limit $p\to\infty$.
Related papers
- Interpretation of Quantum Theory and Cosmology [0.0]
We reconsider the problem of the interpretation of the Quantum Theory (QT) in the perspective of the entire universe.
For the Universe we adopt a variance of the LambdaCDM model with Omega=1, one single inflaton with an Higgs type potential, the initial time at t=minus infinite.
arXiv Detail & Related papers (2023-04-14T12:32:30Z) - Follow the Math!: The mathematics of quantum mechanics as the
mathematics of set partitions linearized to (Hilbert) vector spaces [0.0]
The math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions.
The key machinery to go from indefinite to more definite states is the partition join operation.
arXiv Detail & Related papers (2022-07-31T07:45:17Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum
Mechanics [0.0]
This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence.
The focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics.
arXiv Detail & Related papers (2021-05-24T18:00:06Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - The arithmetic of uncertainty unifies quantum formalism and relativistic
spacetime [0.0]
Quantum theory deals with objects probabilistically at small scales, whereas relativity deals classically with motion in space and time.
We show here that the mathematical structures of quantum theory and of relativity follow together from pure thought.
One dimension of time and three dimensions of space are thus derived as the profound and inevitable framework of physics.
arXiv Detail & Related papers (2020-12-19T20:40:27Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Theory as Symmetry Broken by Vitality [0.0]
I summarize a research program that aims to reconstruct quantum theory from a fundamental physical principle.
My primary goal is to clarify motivations, rather than to present a closed book of numbered theorems.
arXiv Detail & Related papers (2019-07-04T14:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.