Quantum control beyond the adiabatic regime in 2D curved matter-wave
guides
- URL: http://arxiv.org/abs/2003.05845v1
- Date: Thu, 12 Mar 2020 15:25:48 GMT
- Title: Quantum control beyond the adiabatic regime in 2D curved matter-wave
guides
- Authors: Fran\c{c}ois Impens, Romain Duboscq and David Gu\'ery-Odelin
- Abstract summary: The propagation of matter waves in curved geometry is relevant for electrons in nano-wires, solid-state physics structures and atomtronics.
Here, we explore the design of 2D sharply bent wave-guides for the propagation of matter waves beyond the adiabatic regime.
The bend design, which enables the connection of guide components rotated by an arbitrary angle and of arbitrary curvatures, rests on an exact inverse-engineering technique.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The propagation of matter waves in curved geometry is relevant for electrons
in nano-wires, solid-state physics structures and atomtronics. Curvature
effects are usually addressed within the adiabatic limit and treated via an
effective potential acting on the manifold to which the particles are strongly
confined. However, the strength of the confinements that can be achieved
experimentally are in practice limited, and the adiabatic approximation
framework often appears too restrictive for the realistic design of relevant
propagation structures. Here, we explore the design of 2D sharply bent
wave-guides for the propagation of matter waves beyond the adiabatic regime.
The bend design, which enables the connection of guide components rotated by an
arbitrary angle and of arbitrary curvatures, rests on an exact
inverse-engineering technique. The resolution of the full 2D Schr\"odinger
equation in curved geometry shows that our method yields reflectionless guides
with a transverse stability improved by several orders of magnitude when
compared to circular guides of similar size.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Two-dimensional topological effect in a transmon qubit array with tunable couplings [6.358193602870173]
We investigate a square-lattice architecture of superconducting transmon qubits with inter-qubit interactions mediated by inductive couplers.
The inductive couling between the qubit and couplers is suggested to be designed into the gradiometer form to intigimate the flux noise orginating from the environment.
We present a systematic method on how to measure the topological band structure based on time- and space-domain Frourier transformation of the wave function after properly excited.
arXiv Detail & Related papers (2024-02-05T00:57:12Z) - Interference induced anisotropy in a two-dimensional dark state optical
lattice [0.0]
We describe a two-dimensional optical lattice for ultracold atoms with spatial features below the diffraction limit.
We numerically investigate the energy spectrum including decay from the excited state, and find that the adiabatic approximation is sound for strong coupling strengths.
arXiv Detail & Related papers (2023-04-01T12:02:25Z) - Machine Learning Extreme Acoustic Non-reciprocity in a Linear Waveguide
with Multiple Nonlinear Asymmetric Gates [68.8204255655161]
This work is a study of acoustic non-reciprocity exhibited by a passive one-dimensional linear waveguide incorporating two local strongly nonlinear, asymmetric gates.
The maximum transmissibility reaches as much as 40%, and the transmitted energy from upstream to downstream varies up to nine orders of magnitude, depending on the direction of wave propagation.
arXiv Detail & Related papers (2023-02-02T17:28:04Z) - Qubit-controlled directional edge states in waveguide QED [0.0]
We show that the chirality of photonic bound state, that emerges in the bandgap of the waveguide, depends only on the energy of the qubit.
In contrast to previous proposals that have either shown imperfect chirality or fixed directionality, our waveguide QED scheme achieves both perfect chirality and the capability to switch the directionality on demand with just one tunable element.
arXiv Detail & Related papers (2022-11-30T20:29:52Z) - Spatially strongly confined atomic excitation via two dimensional
stimulated Raman adiabatic passage [0.0]
We consider a method of sub-superlocalization and patterning of atomic matter waves via a two dimensional stimulated Raman adiabatic passage (2D STIRAP) process.
By numerical simulations we show that the 2D STIRAP approach outperforms the established method of coherent population trapping.
arXiv Detail & Related papers (2021-11-05T22:45:21Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Anomalous in-gap edge states in two-dimensional pseudospin-1 Dirac
insulators [0.0]
Quantum materials that host a flat band, such as pseudospin-1 lattices and magic-angle twisted bilayer graphene, can exhibit drastically new physical phenomena.
We report a surprising class of electronic in-gap edge states in pseudospin-1 materials.
In particular, we find that, in two-dimensional gapped (insulating) Dirac systems of massive spin-1 quasiparticles, in-gap edge modes can emerge through only an em electrostatic potential applied to a finite domain.
arXiv Detail & Related papers (2020-05-20T16:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.