W2S: Microscopy Data with Joint Denoising and Super-Resolution for
Widefield to SIM Mapping
- URL: http://arxiv.org/abs/2003.05961v2
- Date: Mon, 24 Aug 2020 11:17:40 GMT
- Title: W2S: Microscopy Data with Joint Denoising and Super-Resolution for
Widefield to SIM Mapping
- Authors: Ruofan Zhou, Majed El Helou, Daniel Sage, Thierry Laroche, Arne Seitz,
Sabine S\"usstrunk
- Abstract summary: In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution.
To obtain clean high-resolution (HR) images, one can either use microscopy techniques, such as structured-illumination microscopy (SIM) or apply denoising and super-resolution (SR) algorithms.
We show that state-of-the-art SR networks perform very poorly on noisy inputs.
- Score: 17.317001872212543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In fluorescence microscopy live-cell imaging, there is a critical trade-off
between the signal-to-noise ratio and spatial resolution on one side, and the
integrity of the biological sample on the other side. To obtain clean
high-resolution (HR) images, one can either use microscopy techniques, such as
structured-illumination microscopy (SIM), or apply denoising and
super-resolution (SR) algorithms. However, the former option requires multiple
shots that can damage the samples, and although efficient deep learning based
algorithms exist for the latter option, no benchmark exists to evaluate these
algorithms on the joint denoising and SR (JDSR) tasks. To study JDSR on
microscopy data, we propose such a novel JDSR dataset, Widefield2SIM (W2S),
acquired using a conventional fluorescence widefield and SIM imaging. W2S
includes 144,000 real fluorescence microscopy images, resulting in a total of
360 sets of images. A set is comprised of noisy low-resolution (LR) widefield
images with different noise levels, a noise-free LR image, and a corresponding
high-quality HR SIM image. W2S allows us to benchmark the combinations of 6
denoising methods and 6 SR methods. We show that state-of-the-art SR networks
perform very poorly on noisy inputs. Our evaluation also reveals that applying
the best denoiser in terms of reconstruction error followed by the best SR
method does not necessarily yield the best final result. Both quantitative and
qualitative results show that SR networks are sensitive to noise and the
sequential application of denoising and SR algorithms is sub-optimal. Lastly,
we demonstrate that SR networks retrained end-to-end for JDSR outperform any
combination of state-of-the-art deep denoising and SR networks
Related papers
- Zero-Shot Image Denoising for High-Resolution Electron Microscopy [28.34992348748098]
High-resolution electron microscopy (HREM) imaging technique is a powerful tool for directly visualizing a broad range of materials in real-space.
It faces challenges in denoising due to ultra-low signal-to-noise ratio (SNR) and scarce data availability.
We propose Noise2SR, a zero-shot self-supervised learning (ZS-SSL) denoising framework for HREM.
arXiv Detail & Related papers (2024-06-20T12:40:18Z) - SR-CACO-2: A Dataset for Confocal Fluorescence Microscopy Image Super-Resolution [7.770202118479678]
Machine/deep learning methods for single-image super-resolution (SISR) can be applied to restore image quality by upscaling lower-resolution images to yield high-resolution images (HR)
SISR methods have been successfully applied to photo-realistic images due partly to the abundance of publicly available data.
We introduce a large scanning confocal microscopy dataset named SR-CACO-2 that is comprised of low- and high-resolution image pairs marked for three different fluorescent markers.
arXiv Detail & Related papers (2024-06-13T14:30:35Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - A No-Reference Deep Learning Quality Assessment Method for
Super-resolution Images Based on Frequency Maps [39.58198651685851]
We propose a no-reference deep-learning image quality assessment method based on frequency maps.
We first obtain the high-frequency map (HM) and low-frequency map (LM) of SRI by using Sobel operator and piecewise smooth image approximation.
Our method outperforms all compared IQA models on the selected three super-resolution quality assessment (SRQA) databases.
arXiv Detail & Related papers (2022-06-09T05:43:37Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
We propose a new perception consistency ultrasound image super-resolution (SR) method based on self-supervision and cycle generative adversarial network (CycleGAN)
We first generate the HR fathers and the LR sons of the test ultrasound LR image through image enhancement.
We then make full use of the cycle loss of LR-SR-LR and HR-LR-SR and the adversarial characteristics of the discriminator to promote the generator to produce better perceptually consistent SR results.
arXiv Detail & Related papers (2020-12-28T08:24:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Benefiting from Bicubically Down-Sampled Images for Learning Real-World
Image Super-Resolution [22.339751911637077]
We propose to handle real-world SR by splitting this ill-posed problem into two comparatively more well-posed steps.
First, we train a network to transform real LR images to the space of bicubically downsampled images in a supervised manner.
Second, we take a generic SR network trained on bicubically downsampled images to super-resolve the transformed LR image.
arXiv Detail & Related papers (2020-07-06T20:27:58Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
Deep learning algorithm with self-supervision is proposed in this paper: SAR2SAR.
The strategy to adapt it to SAR despeckling is presented, based on a compensation of temporal changes and a loss function adapted to the statistics of speckle.
Results on real images are discussed, to show the potential of the proposed algorithm.
arXiv Detail & Related papers (2020-06-26T15:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.