論文の概要: LIBRE: The Multiple 3D LiDAR Dataset
- arxiv url: http://arxiv.org/abs/2003.06129v2
- Date: Wed, 24 Jun 2020 17:00:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 02:07:13.708699
- Title: LIBRE: The Multiple 3D LiDAR Dataset
- Title(参考訳): LIBRE: 複数の3DLiDARデータセット
- Authors: Alexander Carballo, Jacob Lambert, Abraham Monrroy-Cano, David Robert
Wong, Patiphon Narksri, Yuki Kitsukawa, Eijiro Takeuchi, Shinpei Kato, and
Kazuya Takeda
- Abstract要約: We present LIBRE: LiDAR Benchmarking and Reference, a first-of-in-kind dataset with 10 different LiDAR sensor。
LIBREは、現在利用可能なLiDARを公平に比較するための手段を提供するために、研究コミュニティに貢献する。
また、既存の自動運転車やロボティクス関連のソフトウェアの改善も促進する。
- 参考スコア(独自算出の注目度): 54.25307983677663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present LIBRE: LiDAR Benchmarking and Reference, a
first-of-its-kind dataset featuring 10 different LiDAR sensors, covering a
range of manufacturers, models, and laser configurations. Data captured
independently from each sensor includes three different environments and
configurations: static targets, where objects were placed at known distances
and measured from a fixed position within a controlled environment; adverse
weather, where static obstacles were measured from a moving vehicle, captured
in a weather chamber where LiDARs were exposed to different conditions (fog,
rain, strong light); and finally, dynamic traffic, where dynamic objects were
captured from a vehicle driven on public urban roads, multiple times at
different times of the day, and including supporting sensors such as cameras,
infrared imaging, and odometry devices. LIBRE will contribute to the research
community to (1) provide a means for a fair comparison of currently available
LiDARs, and (2) facilitate the improvement of existing self-driving vehicles
and robotics-related software, in terms of development and tuning of
LiDAR-based perception algorithms.
- Abstract(参考訳): LIBRE: LiDARベンチマークと参照(LiDAR Benchmarking and Reference)は、10種類のLiDARセンサーを備えたファースト・オブ・ザ・キンドのデータセットで、さまざまなメーカー、モデル、レーザー構成をカバーする。
Data captured independently from each sensor includes three different environments and configurations: static targets, where objects were placed at known distances and measured from a fixed position within a controlled environment; adverse weather, where static obstacles were measured from a moving vehicle, captured in a weather chamber where LiDARs were exposed to different conditions (fog, rain, strong light); and finally, dynamic traffic, where dynamic objects were captured from a vehicle driven on public urban roads, multiple times at different times of the day, and including supporting sensors such as cameras, infrared imaging, and odometry devices.
LIBREは、(1)現在利用可能なLiDARを公正に比較するための手段を提供し、(2)LiDARに基づく認識アルゴリズムの開発とチューニングの観点から、既存の自動運転車とロボット関連ソフトウェアの改善を促進する。
関連論文リスト
- SemanticSpray++: A Multimodal Dataset for Autonomous Driving in Wet Surface Conditions [10.306226508237348]
SemanticSpray++データセットは、湿った表面条件下でのハイウェイのようなシナリオのカメラ、LiDAR、レーダーデータのためのラベルを提供する。
3つのセンサーのモダリティをラベル付けすることで、データセットは、異なる知覚方法のパフォーマンスを分析するための包括的なテストベッドを提供する。
論文 参考訳(メタデータ) (2024-06-14T11:46:48Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
我々は、異なるLiDARスキャンからレーザービーム操作を統合するフレームワークであるLaserMix++を導入し、データ効率の学習を支援するためにLiDAR-カメラ対応を組み込んだ。
結果は、LaserMix++が完全に教師付き代替よりも優れており、5倍のアノテーションで同等の精度を実現していることを示している。
この大幅な進歩は、LiDARベースの3Dシーン理解システムにおける広範囲なラベル付きデータへの依存を減らすための半教師付きアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-05-08T17:59:53Z) - Better Monocular 3D Detectors with LiDAR from the Past [64.6759926054061]
カメラベースの3D検出器は、画像の奥行きのあいまいさのため、LiDARベースの検出器に比べて性能が劣ることが多い。
本研究では,未ラベルの歴史的LiDARデータを活用することにより,単分子3D検出器の改良を図る。
複数の最先端モデルやデータセットに対して,9.66ミリ秒の追加レイテンシとストレージコストの低い,一貫性と大幅なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-04-08T01:38:43Z) - CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking [40.630532348405595]
Camera-RADAR 3D Detection and Tracking (CR3DT)は3Dオブジェクト検出のためのカメラ・レーダ融合モデルであり、Multi-Object Tracking (MOT) である。
State-of-the-Art (SotA)カメラ専用のBEVDetアーキテクチャの基礎の上に構築されたCR3DTは、検出機能とトラッキング機能の両方で大幅に改善されている。
論文 参考訳(メタデータ) (2024-03-22T16:06:05Z) - Real-Time And Robust 3D Object Detection with Roadside LiDARs [20.10416681832639]
道路沿いのLiDARにおける交通参加者をリアルタイムに検出できる3次元物体検出モデルを設計する。
我々のモデルは既存の3D検出器をベースラインとして使用し、精度を向上させる。
スマートシティのアプリケーションに使用できるLiDARベースの3D検出器に多大な貢献をしています。
論文 参考訳(メタデータ) (2022-07-11T21:33:42Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
本稿では,移動ロボットのシナリオに着目した既存のLiDAR人物検出装置について検討する。
実験は3Dと2D LiDARのセンサー間のモダリティのギャップだけでなく、運転と移動ロボットのシナリオ間の領域ギャップを回避している。
その結果、LiDARに基づく人物検出の実践的な洞察を与え、関連する移動ロボットの設計と応用に関する情報決定を容易にする。
論文 参考訳(メタデータ) (2021-06-21T16:35:49Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - Cirrus: A Long-range Bi-pattern LiDAR Dataset [35.87501129332217]
我々は、自律運転タスクのための新しい長距離二パターンLiDARパブリックデータセットであるCirrusを紹介する。
我々のプラットフォームには高解像度ビデオカメラと250メートルの有効範囲のLiDARセンサーが装備されている。
Cirrusでは、8つのカテゴリのオブジェクトが、有効範囲全体のLiDAR点雲に完全に注釈付けされている。
論文 参考訳(メタデータ) (2020-12-05T03:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。