論文の概要: Cirrus: A Long-range Bi-pattern LiDAR Dataset
- arxiv url: http://arxiv.org/abs/2012.02938v1
- Date: Sat, 5 Dec 2020 03:18:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 12:07:26.281713
- Title: Cirrus: A Long-range Bi-pattern LiDAR Dataset
- Title(参考訳): Cirrus: 長距離二パターンLiDARデータセット
- Authors: Ze Wang, Sihao Ding, Ying Li, Jonas Fenn, Sohini Roychowdhury, Andreas
Wallin, Lane Martin, Scott Ryvola, Guillermo Sapiro, and Qiang Qiu
- Abstract要約: 我々は、自律運転タスクのための新しい長距離二パターンLiDARパブリックデータセットであるCirrusを紹介する。
我々のプラットフォームには高解像度ビデオカメラと250メートルの有効範囲のLiDARセンサーが装備されている。
Cirrusでは、8つのカテゴリのオブジェクトが、有効範囲全体のLiDAR点雲に完全に注釈付けされている。
- 参考スコア(独自算出の注目度): 35.87501129332217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Cirrus, a new long-range bi-pattern LiDAR public
dataset for autonomous driving tasks such as 3D object detection, critical to
highway driving and timely decision making. Our platform is equipped with a
high-resolution video camera and a pair of LiDAR sensors with a 250-meter
effective range, which is significantly longer than existing public datasets.
We record paired point clouds simultaneously using both Gaussian and uniform
scanning patterns. Point density varies significantly across such a long range,
and different scanning patterns further diversify object representation in
LiDAR. In Cirrus, eight categories of objects are exhaustively annotated in the
LiDAR point clouds for the entire effective range. To illustrate the kind of
studies supported by this new dataset, we introduce LiDAR model adaptation
across different ranges, scanning patterns, and sensor devices. Promising
results show the great potential of this new dataset to the robotics and
computer vision communities.
- Abstract(参考訳): 本稿では,3次元物体検出や高速道路走行やタイムリーな意思決定に不可欠な自動運転タスクのための,新たな長距離バイパターンlidarパブリックデータセットであるcirrusを紹介する。
我々のプラットフォームは高解像度のビデオカメラと250メートルの有効範囲を持つLiDARセンサーを備えており、これは既存の公開データセットよりもかなり長い。
対の点雲をガウス型と一様走査型の両方のパターンで同時に記録する。
点密度はこのような長い範囲で大きく異なり、異なる走査パターンはLiDARのオブジェクト表現をさらに多様化させる。
Cirrusでは、8つのカテゴリのオブジェクトが、有効範囲全体のLiDAR点雲に完全に注釈付けされている。
この新しいデータセットがサポートする研究の種類を説明するために、さまざまな範囲にわたるLiDARモデル適応、走査パターン、センサデバイスを導入している。
有望な結果は、この新しいデータセットがロボティクスとコンピュータビジョンのコミュニティにとって大きな可能性を示している。
関連論文リスト
- Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection [9.076003184833557]
2D画像特徴を融合させてLiDARポイントクラウドデータを再構成する新しいフレームワークであるLiDAR-Camera Augmentation Network (LCANet)を提案する。
LCANetは、画像特徴を3D空間に投影し、意味情報をポイントクラウドデータに統合することで、LiDARセンサーからのデータを融合する。
この融合は、しばしばスパースポイントで表される長距離物体の検出におけるLiDARの弱点を効果的に補う。
論文 参考訳(メタデータ) (2024-09-23T13:03:31Z) - Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
教師なし3次元検出のためのLiDAR-2D Self-paced Learning (LiSe)を提案する。
RGB画像は、正確な2Dローカライゼーションキューを提供するLiDARデータの貴重な補完となる。
本フレームワークでは,適応型サンプリングと弱いモデルアグリゲーション戦略を組み込んだ自己評価学習パイプラインを考案する。
論文 参考訳(メタデータ) (2024-07-11T14:58:49Z) - Improving LiDAR 3D Object Detection via Range-based Point Cloud Density
Optimization [13.727464375608765]
既存の3Dオブジェクト検出器は、遠くにある領域とは対照的に、LiDARセンサーに近い点雲領域でよく機能する傾向にある。
センサ近傍の高密度物体に対する検出モデルには学習バイアスがあり、異なる距離で入力点雲密度を操作するだけで検出性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-09T04:11:43Z) - LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
ディープラーニングの手法は注釈付きデータに大きく依存しており、ドメインの一般化の問題に直面することが多い。
LiDAR-CSデータセットは、リアルタイムトラフィックにおける3Dオブジェクト検出の領域におけるセンサ関連ギャップに対処する最初のデータセットである。
論文 参考訳(メタデータ) (2023-01-29T19:10:35Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object
Detection [96.63947479020631]
多くの現実世界の応用において、大量生産されたロボットや車両が使用するLiDARポイントは通常、大規模な公開データセットよりもビームが少ない。
異なるLiDARビームによって誘導される領域ギャップをブリッジして3次元物体検出を行うLiDAR蒸留法を提案する。
論文 参考訳(メタデータ) (2022-03-28T17:59:02Z) - LiDARCap: Long-range Marker-less 3D Human Motion Capture with LiDAR
Point Clouds [58.402752909624716]
既存のモーションキャプチャデータセットはほとんどが短距離であり、まだ長距離アプリケーションのニーズに合わない。
我々は,この制限を克服するために,LiDARがより長い範囲で捉えた新しい人間のモーションキャプチャーデータセットLiDARHuman26Mを提案する。
我々のデータセットには、IMUシステムによって取得された人間の動きと同期RGB画像も含まれている。
論文 参考訳(メタデータ) (2022-03-28T12:52:45Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z) - It's All Around You: Range-Guided Cylindrical Network for 3D Object
Detection [4.518012967046983]
本研究は,360度深度スキャナーによって生成された3次元データを解析するための新しい手法を提案する。
距離誘導畳み込みの概念を導入し,エゴ車と物体のスケールからの距離で受容場を適応させる。
我々のネットワークは、現在の最先端アーキテクチャに匹敵するnuScenesチャレンジにおいて、強力な結果を示す。
論文 参考訳(メタデータ) (2020-12-05T21:02:18Z) - Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds [76.52448276587707]
本稿では,3次元点群から表現を構成する新しい手法であるReconfigurable Voxelsを提案する。
具体的には,各地区を一定数のボクセルで適応的にカバーするランダムウォーク方式を考案する。
この手法は,特に疎水領域において,ボクセル特性の安定性を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-04-06T15:07:16Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-in-kind dataset with 10 different LiDAR sensor。
LIBREは、現在利用可能なLiDARを公平に比較するための手段を提供するために、研究コミュニティに貢献する。
また、既存の自動運転車やロボティクス関連のソフトウェアの改善も促進する。
論文 参考訳(メタデータ) (2020-03-13T06:17:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。