Pyramidal Edge-maps and Attention based Guided Thermal Super-resolution
- URL: http://arxiv.org/abs/2003.06216v2
- Date: Wed, 30 Sep 2020 05:50:14 GMT
- Title: Pyramidal Edge-maps and Attention based Guided Thermal Super-resolution
- Authors: Honey Gupta and Kaushik Mitra
- Abstract summary: Guided super-resolution (GSR) of thermal images using visible range images is challenging because of the difference in the spectral-range between the images.
We propose a novel algorithm for GSR based on pyramidal edge-maps extracted from the visible image.
Our model outperforms the state-of-the-art GSR methods, both quantitatively and qualitatively.
- Score: 28.798966778371145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Guided super-resolution (GSR) of thermal images using visible range images is
challenging because of the difference in the spectral-range between the images.
This in turn means that there is significant texture-mismatch between the
images, which manifests as blur and ghosting artifacts in the super-resolved
thermal image. To tackle this, we propose a novel algorithm for GSR based on
pyramidal edge-maps extracted from the visible image. Our proposed network has
two sub-networks. The first sub-network super-resolves the low-resolution
thermal image while the second obtains edge-maps from the visible image at a
growing perceptual scale and integrates them into the super-resolution
sub-network with the help of attention-based fusion. Extraction and integration
of multi-level edges allows the super-resolution network to process
texture-to-object level information progressively, enabling more
straightforward identification of overlapping edges between the input images.
Extensive experiments show that our model outperforms the state-of-the-art GSR
methods, both quantitatively and qualitatively.
Related papers
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution.
Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets)
We propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers.
arXiv Detail & Related papers (2021-07-06T14:11:03Z) - Photothermal-SR-Net: A Customized Deep Unfolding Neural Network for
Photothermal Super Resolution Imaging [9.160910754837756]
Photothermal-SR-Net is proposed in this paper, which performs deconvolution by deep unfolding considering the underlying physics.
Photothermal-SR-Net applies trained block-sparsity thresholding to the acquired thermal images in each convolutional layer.
arXiv Detail & Related papers (2021-04-21T14:41:04Z) - Multi-Scale Progressive Fusion Learning for Depth Map Super-Resolution [11.072332820377612]
The resolution of depth map collected by depth camera is often lower than that of its associated RGB camera.
A major problem with depth map super-resolution is that there will be obvious jagged edges and excessive loss of details.
We propose a multi-scale progressive fusion network for depth map SR, which possess an structure to integrate hierarchical features in different domains.
arXiv Detail & Related papers (2020-11-24T03:03:07Z) - Robust Face Alignment by Multi-order High-precision Hourglass Network [44.94500006611075]
This paper proposes a heatmap subpixel regression (HSR) method and a multi-order cross geometry-aware (MCG) model.
The HSR method is proposed to achieve high-precision landmark detection by a well-designed subpixel detection loss (SDL) and subpixel detection technology (SDT)
At the same time, the MCG model is able to use the proposed multi-order cross information to learn more discriminative representations for enhancing facial geometric constraints and context information.
arXiv Detail & Related papers (2020-10-17T05:40:30Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.