論文の概要: What Information Does a ResNet Compress?
- arxiv url: http://arxiv.org/abs/2003.06254v1
- Date: Fri, 13 Mar 2020 13:02:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 01:06:40.406810
- Title: What Information Does a ResNet Compress?
- Title(参考訳): ResNetはどんな情報を圧縮するのか?
- Authors: Luke Nicholas Darlow, Amos Storkey
- Abstract要約: 情報ボトルネックの原理がResNetモデルを用いて現実的な設定に適用できるかどうかを検証する。
学習の2つの段階は、両方の訓練体制で起こり、圧縮はオートエンコーダでも起こります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The information bottleneck principle (Shwartz-Ziv & Tishby, 2017) suggests
that SGD-based training of deep neural networks results in optimally compressed
hidden layers, from an information theoretic perspective. However, this claim
was established on toy data. The goal of the work we present here is to test
whether the information bottleneck principle is applicable to a realistic
setting using a larger and deeper convolutional architecture, a ResNet model.
We trained PixelCNN++ models as inverse representation decoders to measure the
mutual information between hidden layers of a ResNet and input image data, when
trained for (1) classification and (2) autoencoding. We find that two stages of
learning happen for both training regimes, and that compression does occur,
even for an autoencoder. Sampling images by conditioning on hidden layers'
activations offers an intuitive visualisation to understand what a ResNets
learns to forget.
- Abstract(参考訳): 情報ボトルネック原理(Shwartz-Ziv & Tishby, 2017)は、深層ニューラルネットワークのSGDに基づくトレーニングが、情報理論の観点から最適に圧縮された隠れ層をもたらすことを示唆している。
しかし、この主張はおもちゃのデータに基づいている。
ここでの作業の目標は、情報ボトルネックの原則がより大きくより深い畳み込みアーキテクチャ、resnetモデルを使って現実的な設定に適用できるかどうかをテストすることです。
我々はPixelCNN++モデルを逆表現デコーダとして訓練し,(1)分類と(2)自動符号化のトレーニングにおいて,ResNetの隠蔽層と入力画像データの相互情報を測定する。
学習の2つの段階は、両方の訓練体制で起こり、圧縮はオートエンコーダでも起こります。
隠れたレイヤのアクティベーションを条件付けしてイメージをサンプリングすることは、リネットが何を忘れたかを理解するための直感的な視覚化を提供する。
関連論文リスト
- Dynamic Encoding and Decoding of Information for Split Learning in
Mobile-Edge Computing: Leveraging Information Bottleneck Theory [1.1151919978983582]
Split Learning(スプリットラーニング)は、MLモデルを2つの部分(エンコーダとデコーダ)に分割する、プライバシ保護の分散学習パラダイムである。
モバイルエッジコンピューティングでは、エンコーダがユーザ機器(UE)に、デコーダがエッジネットワークに、分割学習によってネットワーク機能を訓練することができる。
本稿では,送信リソース消費の動的バランスと,共有潜在表現の情報化を両立させるためのフレームワークとトレーニング機構を提案する。
論文 参考訳(メタデータ) (2023-09-06T07:04:37Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - Diffused Redundancy in Pre-trained Representations [98.55546694886819]
事前訓練された表現で機能がどのようにコード化されているか、より詳しく見ていきます。
与えられた層における学習された表現は拡散冗長性を示す。
我々の発見は、事前訓練されたディープニューラルネットワークによって学習された表現の性質に光を当てた。
論文 参考訳(メタデータ) (2023-05-31T21:00:50Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
我々はスケール空間理論に頼って凸層を再構築する。
我々はSCale AttentioN Conv Neural Network(textbfSCAN-CNN)という新しいスタイルを構築した。
単発方式として、推論はマルチショット融合よりも効率的である。
論文 参考訳(メタデータ) (2022-09-19T06:35:04Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Recurrence along Depth: Deep Convolutional Neural Networks with
Recurrent Layer Aggregation [5.71305698739856]
本稿では,従来のレイヤからの情報を再利用して,現在のレイヤの特徴をよりよく抽出する方法を説明するために,レイヤアグリゲーションの概念を紹介する。
我々は,深層CNNにおける層構造を逐次的に利用することにより,RLA(recurrent layer aggregate)と呼ばれる非常に軽量なモジュールを提案する。
私たちのRLAモジュールは、ResNets、Xception、MobileNetV2など、多くの主要なCNNと互換性があります。
論文 参考訳(メタデータ) (2021-10-22T15:36:33Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - Automated Cleanup of the ImageNet Dataset by Model Consensus,
Explainability and Confident Learning [0.0]
ImageNetは、ILSVRC12Netでトレーニングされた様々な畳み込みニューラルネットワーク(CNN)のバックボーンである。
本稿では,モデルのコンセンサス,説明可能性,自信のある学習に基づく自動アプリケーションについて述べる。
ImageNet-CleanはSqueezeNetおよびEfficientNet-B0モデルのモデルパフォーマンスを2-2.4%向上させる。
論文 参考訳(メタデータ) (2021-03-30T13:16:35Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - Defending Adversarial Examples via DNN Bottleneck Reinforcement [20.08619981108837]
本稿では,敵対的攻撃に対するディープニューラルネットワーク(DNN)の脆弱性を軽減するための強化手法を提案する。
後者を維持しながら前者を補強することにより、逆らうか否かに関わらず、冗長な情報は、潜在表現から取り除かなければならない。
情報ボトルネックを強化するために,ネットワークの周波数ステアリングを改善するために,マルチスケールの低域目標とマルチスケールの高周波通信を導入する。
論文 参考訳(メタデータ) (2020-08-12T11:02:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。