論文の概要: Human Activity Recognition using Multi-Head CNN followed by LSTM
- arxiv url: http://arxiv.org/abs/2003.06327v1
- Date: Fri, 21 Feb 2020 14:29:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 01:20:22.549161
- Title: Human Activity Recognition using Multi-Head CNN followed by LSTM
- Title(参考訳): マルチヘッドCNNとLSTMを用いた人間の活動認識
- Authors: Waqar Ahmad, Misbah Kazmi, Hazrat Ali
- Abstract要約: 本研究では,CNNとLSTMを用いた新しい身体活動認識法を提案する。
提案手法を用いて,従来の機械学習アルゴリズムや他のディープニューラルネットワークアルゴリズムに匹敵する最先端の精度を実現する。
- 参考スコア(独自算出の注目度): 1.8830374973687412
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study presents a novel method to recognize human physical activities
using CNN followed by LSTM. Achieving high accuracy by traditional machine
learning algorithms, (such as SVM, KNN and random forest method) is a
challenging task because the data acquired from the wearable sensors like
accelerometer and gyroscope is a time-series data. So, to achieve high
accuracy, we propose a multi-head CNN model comprising of three CNNs to extract
features for the data acquired from different sensors and all three CNNs are
then merged, which are followed by an LSTM layer and a dense layer. The
configuration of all three CNNs is kept the same so that the same number of
features are obtained for every input to CNN. By using the proposed method, we
achieve state-of-the-art accuracy, which is comparable to traditional machine
learning algorithms and other deep neural network algorithms.
- Abstract(参考訳): 本研究では,CNNとLSTMを用いた新しい身体活動認識法を提案する。
加速度計やジャイロスコープのようなウェアラブルセンサーから取得したデータは時系列データであるため、従来の機械学習アルゴリズム(SVM、KNN、ランダムフォレスト法など)による高精度の達成は難しい作業である。
そこで我々は,3つのCNNからなるマルチヘッドCNNモデルを提案し,異なるセンサから取得したデータの特徴を抽出し,次に3つのCNN全てをマージし,LSTM層と高密度層を追従する。
3つのCNNの構成は同じで、CNNへの入力毎に同じ数の特徴が得られる。
提案手法を用いて,従来の機械学習アルゴリズムや他のディープニューラルネットワークアルゴリズムに匹敵する最先端の精度を実現する。
関連論文リスト
- Human activity recognition using deep learning approaches and single
frame cnn and convolutional lstm [0.0]
我々は、ビデオから人間の行動を認識するために、単一のフレーム畳み込みニューラルネットワーク(CNN)と畳み込み長短期記憶という、深層学習に基づく2つのアプローチを探索する。
2つのモデルは、ベンチマークアクション認識データセットであるUCF50と、実験のために作成された別のデータセットでトレーニングされ、評価された。
どちらのモデルも精度は良いが、単一のフレームCNNモデルはUCF50データセットで99.8%の精度で畳み込みLSTMモデルより優れている。
論文 参考訳(メタデータ) (2023-04-18T01:33:29Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
本稿では,アラモサキャニオン橋のCNNアルゴリズムを実構造として提案する。
3つの異なるCNNモデルは、1つと2つの故障したセンサーを予測するものとされた。
畳み込み層を追加することによりモデルの精度が向上した。
論文 参考訳(メタデータ) (2022-04-11T23:24:03Z) - Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers [53.65540150901678]
X線自由電子レーザー(XFEL)における単一粒子イメージング(SPI)は、その自然環境における粒子の3次元構造を決定するのに特に適している。
再建を成功させるためには、単一のヒットに由来する回折パターンを多数の取得パターンから分離する必要がある。
本稿では,この課題を画像分類問題として定式化し,畳み込みニューラルネットワーク(CNN)アーキテクチャを用いて解決することを提案する。
論文 参考訳(メタデータ) (2021-12-16T17:03:14Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - A Novel Sleep Stage Classification Using CNN Generated by an Efficient
Neural Architecture Search with a New Data Processing Trick [4.365107026636095]
本稿では,畳み込みニューラルネットワーク(CNN)を用いた新しいデータ処理手法を用いて,効率的な5ステップの分類手法を提案する。
我々は、遺伝的アルゴリズム(GA)NASGを最大限に活用して、最高のCNNアーキテクチャを探索する。
我々は,データ処理トリックの収束性を検証するとともに,従来のCNNの性能をそのトリックの前後で比較する。
論文 参考訳(メタデータ) (2021-10-27T10:36:52Z) - Drowsiness Detection Based On Driver Temporal Behavior Using a New
Developed Dataset [1.8811803364757564]
顔の特徴を自動的に抽出するためにYOLOv3 (You Look Only Once-version3) CNNを適用した。
そして、LSTMニューラルネットワークを用いて、あくびや点滅時間などのドライバーの時間行動を学ぶ。
以上の結果から,CNNとLSTMの併用による眠気検出と提案手法の有効性が示唆された。
論文 参考訳(メタデータ) (2021-03-31T21:15:29Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - 3D CNNs with Adaptive Temporal Feature Resolutions [83.43776851586351]
similarity Guided Sampling (SGS)モジュールは既存のCNNアーキテクチャにプラグインできる。
SGSは、時間的特徴の類似性を学び、類似した特徴をまとめることで、3D CNNに権限を与える。
評価の結果,提案モジュールは精度を保ちながら計算コスト(GFLOP)を半分に減らし,最先端化を実現していることがわかった。
論文 参考訳(メタデータ) (2020-11-17T14:34:05Z) - Improving Automated COVID-19 Grading with Convolutional Neural Networks
in Computed Tomography Scans: An Ablation Study [3.072491397378425]
本稿では,CNNに基づくCT画像からのCOVID-19グレーティングのためのアルゴリズムの性能向上に寄与する各種成分を同定する。
これらの成分を用いた3D CNNは, テストセット105CTでは0.934のLOC曲線 (AUC) , 公開されている742CTでは0.923のAUCを達成した。
論文 参考訳(メタデータ) (2020-09-21T09:58:57Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。