論文の概要: Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers
- arxiv url: http://arxiv.org/abs/2112.09020v1
- Date: Thu, 16 Dec 2021 17:03:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 17:51:19.697706
- Title: Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers
- Title(参考訳): x線自由電子レーザーによる単一粒子イメージング実験における畳み込みニューラルネットワークを用いた回折パターンの分類
- Authors: Dameli Assalauova, Alexandr Ignatenko, Fabian Isensee, Sergey Bobkov,
Darya Trofimova, and Ivan A. Vartanyants
- Abstract要約: X線自由電子レーザー(XFEL)における単一粒子イメージング(SPI)は、その自然環境における粒子の3次元構造を決定するのに特に適している。
再建を成功させるためには、単一のヒットに由来する回折パターンを多数の取得パターンから分離する必要がある。
本稿では,この課題を画像分類問題として定式化し,畳み込みニューラルネットワーク(CNN)アーキテクチャを用いて解決することを提案する。
- 参考スコア(独自算出の注目度): 53.65540150901678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is
particularly well suited to determine the 3D structure of particles in their
native environment. For a successful reconstruction, diffraction patterns
originating from a single hit must be isolated from a large number of acquired
patterns. We propose to formulate this task as an image classification problem
and solve it using convolutional neural network (CNN) architectures. Two CNN
configurations are developed: one that maximises the F1-score and one that
emphasises high recall. We also combine the CNNs with expectation maximization
(EM) selection as well as size filtering. We observed that our CNN selections
have lower contrast in power spectral density functions relative to the EM
selection, used in our previous work. However, the reconstruction of our
CNN-based selections gives similar results. Introducing CNNs into SPI
experiments allows streamlining the reconstruction pipeline, enables
researchers to classify patterns on the fly, and, as a consequence, enables
them to tightly control the duration of their experiments. We think that
bringing non-standard artificial intelligence (AI) based solutions in a
well-described SPI analysis workflow may be beneficial for the future
development of the SPI experiments.
- Abstract(参考訳): X線自由電子レーザー(XFEL)における単一粒子イメージング(SPI)は、その自然環境における粒子の3次元構造を決定するのに特に適している。
再建を成功させるためには、単一のヒットに由来する回折パターンを多数の取得パターンから分離する必要がある。
本稿では,この課題を画像分類問題として定式化し,畳み込みニューラルネットワーク(CNN)アーキテクチャを用いて解決することを提案する。
2つのCNN構成が開発され、1つはF1スコアを最大化し、もう1つはハイリコールを強調する。
また,CNNと予測最大化(EM)選択,およびサイズフィルタリングを組み合わせる。
我々は,これまでの研究で使用したem選択と比較して,cnn選択のパワースペクトル密度関数のコントラストが小さいことを見出した。
しかし、cnnに基づく選択の再構築も同様の結果をもたらす。
CNNをSPI実験に導入することで、再構築パイプラインの合理化、研究者によるハエのパターンの分類、その結果、実験期間の厳密な制御が可能になる。
我々は、非標準人工知能(AI)ベースのソリューションを十分に記述されたSPI分析ワークフローに導入することは、将来のSPI実験の発展に有益であると考えている。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
深部分離型畳み込みニューラルネットワーク(DS-CNN)の最近の進歩は、新しいアーキテクチャをもたらす。
本稿では,DS-CNNアーキテクチャのもう一つの顕著な特性を明らかにする。
論文 参考訳(メタデータ) (2024-01-25T19:05:53Z) - PICNN: A Pathway towards Interpretable Convolutional Neural Networks [12.31424771480963]
フィルタと画像のクラス間の絡み合いを軽減する新しい経路を導入する。
我々はBernoulliサンプリングを用いて、学習可能なフィルタクラス対応行列からフィルタクラスタ割り当て行列を生成する。
提案手法の有効性を,広く使用されている10のネットワークアーキテクチャ上で評価する。
論文 参考訳(メタデータ) (2023-12-19T11:36:03Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
全方向画像の表現モデルの学習について検討し、全方向画像の深層学習モデルで使用される数学的ツールを再定義するために、HEALPixの球面一様サンプリングの特性を利用することを提案する。
提案したオン・ザ・スフィア・ソリューションは、等方形画像に適用された類似の学習モデルと比較して、13.7%のビットレートを節約できる圧縮ゲインを向上させる。
論文 参考訳(メタデータ) (2021-07-19T22:14:30Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Convolutional Neural Networks for Multispectral Image Cloud Masking [7.812073412066698]
畳み込みニューラルネットワーク(CNN)は多くの画像分類タスクの最先端技術であることが証明されている。
Proba-Vマルチスペクトル画像のクラウドマスキングにおける異なるCNNアーキテクチャの利用について検討する。
論文 参考訳(メタデータ) (2020-12-09T21:33:20Z) - Improving Automated COVID-19 Grading with Convolutional Neural Networks
in Computed Tomography Scans: An Ablation Study [3.072491397378425]
本稿では,CNNに基づくCT画像からのCOVID-19グレーティングのためのアルゴリズムの性能向上に寄与する各種成分を同定する。
これらの成分を用いた3D CNNは, テストセット105CTでは0.934のLOC曲線 (AUC) , 公開されている742CTでは0.923のAUCを達成した。
論文 参考訳(メタデータ) (2020-09-21T09:58:57Z) - Exploring Deep Hybrid Tensor-to-Vector Network Architectures for
Regression Based Speech Enhancement [53.47564132861866]
我々は、CNN-TTというハイブリッドアーキテクチャが、モデルパラメータを小さくして高品質な性能を維持することができることを見出した。
CNN-TTは、音声品質を改善するために、特徴抽出のために下部に複数の畳み込み層で構成されている。
論文 参考訳(メタデータ) (2020-07-25T22:21:05Z) - Harnessing spatial homogeneity of neuroimaging data: patch individual
filter layers for CNNs [0.0]
ニューラルネットワークにおける階層的抽象化の考え方と、ニューロイメージングデータの空間的均一性に先立って、新しいCNNアーキテクチャを提案する。
重みを共有せずに個々の画像領域(パッチ)でフィルタを学習することにより、PIF層は抽象的特徴をより早く、より少ないサンプルで学習することができる。
論文 参考訳(メタデータ) (2020-07-23T10:11:43Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
CNNのアーキテクチャと性能の関係について検討する。
本稿では,2つのコンピュータビジョンに基づく物理問題において,その特性がネットワークの性能を予測できることを示す。
我々は機械学習モデルを用いて、トレーニング前にネットワークが一定のしきい値精度よりも優れた性能を発揮できるかどうかを予測する。
論文 参考訳(メタデータ) (2020-01-07T16:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。