Solving Portfolio Optimization Problems Using MOEA/D and Levy Flight
- URL: http://arxiv.org/abs/2003.06737v1
- Date: Sun, 15 Mar 2020 02:14:53 GMT
- Title: Solving Portfolio Optimization Problems Using MOEA/D and Levy Flight
- Authors: Yifan He, Claus Aranha
- Abstract summary: This paper presents a method injecting a distribution-based mutation method named L'evy Flight into a decomposition based MOEA named MOEA/D.
Numerical results and statistical test indicate that this method can outperform comparison methods in most cases.
- Score: 5.167794607251493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portfolio optimization is a financial task which requires the allocation of
capital on a set of financial assets to achieve a better trade-off between
return and risk. To solve this problem, recent studies applied multi-objective
evolutionary algorithms (MOEAs) for its natural bi-objective structure. This
paper presents a method injecting a distribution-based mutation method named
L\'evy Flight into a decomposition based MOEA named MOEA/D. The proposed
algorithm is compared with three MOEA/D-like algorithms, NSGA-II, and other
distribution-based mutation methods on five portfolio optimization benchmarks
sized from 31 to 225 in OR library without constraints, assessing with six
metrics. Numerical results and statistical test indicate that this method can
outperform comparison methods in most cases. We analyze how Levy Flight
contributes to this improvement by promoting global search early in the
optimization. We explain this improvement by considering the interaction
between mutation method and the property of the problem.
Related papers
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Relational Reasoning via Set Transformers: Provable Efficiency and
Applications to MARL [154.13105285663656]
A cooperative Multi-A gent R einforcement Learning (MARL) with permutation invariant agents framework has achieved tremendous empirical successes in real-world applications.
Unfortunately, the theoretical understanding of this MARL problem is lacking due to the curse of many agents and the limited exploration of the relational reasoning in existing works.
We prove that the suboptimality gaps of the model-free and model-based algorithms are independent of and logarithmic in the number of agents respectively, which mitigates the curse of many agents.
arXiv Detail & Related papers (2022-09-20T16:42:59Z) - Data-Driven Evolutionary Multi-Objective Optimization Based on
Multiple-Gradient Descent for Disconnected Pareto Fronts [6.560512252982714]
This paper proposes a data-driven evolutionary multi-objective optimization (EMO) algorithm based on multiple-gradient descent.
Its infill criterion recommends a batch of promising candidate solutions to conduct expensive objective function evaluations.
arXiv Detail & Related papers (2022-05-28T06:01:41Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
Large-scale multiobjective optimization problems (LSMOPs) are characterized as involving hundreds or even thousands of decision variables and multiple conflicting objectives.
Previous research has shown that these optimal solutions are uniformly distributed on the manifold structure in the low-dimensional space.
In this work, a generative adversarial network (GAN)-based manifold framework is proposed to learn the manifold and generate high-quality solutions.
arXiv Detail & Related papers (2021-01-08T09:38:38Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
This paper proposed a new Multi-objective Algorithm as an extension of the Hybrid Adaptive Evolutionary algorithm (HAEA) called MoHAEA.
MoHAEA is compared with four states of the art MOEAs, namely MOEA/D, pa$lambda$-MOEA/D, MOEA/D-AWA, and NSGA-II.
arXiv Detail & Related papers (2020-04-29T02:16:49Z) - dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for
Permutation-based Discrete Optimization Problems [6.943742860591444]
We propose the first adaptation of the recently introduced Multifactorial Evolutionary Algorithm II (MFEA-II) to permutation-based discrete environments.
The performance of the proposed solver has been assessed over 5 different multitasking setups.
arXiv Detail & Related papers (2020-04-14T14:42:47Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.