dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for
Permutation-based Discrete Optimization Problems
- URL: http://arxiv.org/abs/2004.06559v3
- Date: Wed, 13 May 2020 15:35:08 GMT
- Title: dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for
Permutation-based Discrete Optimization Problems
- Authors: Eneko Osaba, Aritz D. Martinez, Akemi Galvez, Andres Iglesias, Javier
Del Ser
- Abstract summary: We propose the first adaptation of the recently introduced Multifactorial Evolutionary Algorithm II (MFEA-II) to permutation-based discrete environments.
The performance of the proposed solver has been assessed over 5 different multitasking setups.
- Score: 6.943742860591444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emerging research paradigm coined as multitasking optimization aims to
solve multiple optimization tasks concurrently by means of a single search
process. For this purpose, the exploitation of complementarities among the
tasks to be solved is crucial, which is often achieved via the transfer of
genetic material, thereby forging the Transfer Optimization field. In this
context, Evolutionary Multitasking addresses this paradigm by resorting to
concepts from Evolutionary Computation. Within this specific branch, approaches
such as the Multifactorial Evolutionary Algorithm (MFEA) has lately gained a
notable momentum when tackling multiple optimization tasks. This work
contributes to this trend by proposing the first adaptation of the recently
introduced Multifactorial Evolutionary Algorithm II (MFEA-II) to
permutation-based discrete optimization environments. For modeling this
adaptation, some concepts cannot be directly applied to discrete search spaces,
such as parent-centric interactions. In this paper we entirely reformulate such
concepts, making them suited to deal with permutation-based search spaces
without loosing the inherent benefits of MFEA-II. The performance of the
proposed solver has been assessed over 5 different multitasking setups,
composed by 8 datasets of the well-known Traveling Salesman (TSP) and
Capacitated Vehicle Routing Problems (CVRP). The obtained results and their
comparison to those by the discrete version of the MFEA confirm the good
performance of the developed dMFEA-II, and concur with the insights drawn in
previous studies for continuous optimization.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
We propose a novel textscAdmeta (textbfADouble exponential textbfMov averagtextbfE textbfAdaptive and non-adaptive momentum) framework.
We provide two implementations, textscAdmetaR and textscAdmetaS, the former based on RAdam and the latter based on SGDM.
arXiv Detail & Related papers (2023-07-02T18:16:06Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization [5.885238773559015]
"Innovization" is a task of learning common relationships among some or all of the Pareto-optimal (PO) solutions in optimisation problems.
Recent studies have shown that a chronological sequence of non-dominated solutions also possess salient patterns that can be used to learn problem features.
We propose a machine-learning- (ML-) assisted modelling approach that learns the modifications in design variables needed to advance population members towards the Pareto-optimal set.
arXiv Detail & Related papers (2020-11-21T10:29:15Z) - AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic
Algorithm for Evolutionary Multitasking [17.120962133525225]
We introduce a novel adaptive metaheuristic algorithm to deal with Evolutionary Multitasking environments.
AT-MFCGA relies on cellular automata to implement mechanisms in order to exchange knowledge among the optimization problems under consideration.
arXiv Detail & Related papers (2020-10-08T12:00:10Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - COEBA: A Coevolutionary Bat Algorithm for Discrete Evolutionary
Multitasking [9.54239662772307]
We propose a novel algorithmic scheme for dealing with multitasking environments.
The proposed approach, coined as Coevolutionary Bat Algorithm, finds its inspiration in concepts from both co-evolutionary strategies and the metaheuristic Bat Algorithm.
arXiv Detail & Related papers (2020-03-24T13:37:43Z) - Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design,
Performance Comparison and Genetic Transferability Analysis [17.120962133525225]
Multiobjective optimization is an incipient research area which is lately gaining a notable research momentum.
In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios.
The proposed MFCGA hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems.
arXiv Detail & Related papers (2020-03-24T11:03:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.