論文の概要: Hyperspectral-Multispectral Image Fusion with Weighted LASSO
- arxiv url: http://arxiv.org/abs/2003.06944v1
- Date: Sun, 15 Mar 2020 23:07:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 09:14:50.145593
- Title: Hyperspectral-Multispectral Image Fusion with Weighted LASSO
- Title(参考訳): 重み付きLASSOを用いたハイパースペクトル・マルチスペクトル画像融合
- Authors: Nguyen Tran, Rupali Mankar, David Mayerich, Zhu Han
- Abstract要約: 本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
- 参考スコア(独自算出の注目度): 68.04032419397677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral imaging enables spatially-resolved identification of materials in
remote sensing, biomedicine, and astronomy. However, acquisition times require
balancing spectral and spatial resolution with signal-to-noise. Hyperspectral
imaging provides superior material specificity, while multispectral images are
faster to collect at greater fidelity. We propose an approach for fusing
hyperspectral and multispectral images to provide high-quality hyperspectral
output. The proposed optimization leverages the least absolute shrinkage and
selection operator (LASSO) to perform variable selection and regularization.
Computational time is reduced by applying the alternating direction method of
multipliers (ADMM), as well as initializing the fusion image by estimating it
using maximum a posteriori (MAP) based on Hardie's method. We demonstrate that
the proposed sparse fusion and reconstruction provides quantitatively superior
results when compared to existing methods on publicly available images.
Finally, we show how the proposed method can be practically applied in
biomedical infrared spectroscopic microscopy.
- Abstract(参考訳): 分光画像は、リモートセンシング、バイオメディシン、天文学における物質の空間分解された識別を可能にする。
しかし、取得時間はスペクトルと空間分解能のバランスをとる必要がある。
ハイパースペクトルイメージングは優れた材料特異性を提供するが、マルチスペクトル画像はより忠実に収集するのが速い。
本稿では,ハイパースペクトル画像とマルチスペクトル画像を用いて高品質のハイパースペクトル出力を実現する手法を提案する。
提案した最適化は、最小絶対収縮・選択演算子(LASSO)を利用して可変選択および正規化を行う。
乗算器の交互方向法 (ADMM) を適用することにより計算時間を短縮し, ハーディの手法に基づく最大アフターイ (MAP) を用いて融合画像を推定することにより, 融合画像を初期化する。
提案するスパース融合と再構成は,公開画像における既存手法と比較して定量的に優れた結果が得られることを示す。
最後に,本手法が生体医学的赤外分光顕微鏡にどのように応用できるかを示す。
関連論文リスト
- Super-resolution of ultrafast pulses via spectral inversion [0.0]
ブロードバンド光(10~100GHz)を対象とした分光超解像法を実験的に実証した。
等輝度の2つの非コヒーレントスペクトル特徴と、コヒーレンス時間当たりの光子との小さな分離を推定するパラダイム的問題について検討した。
この装置は、電気光学タイムレンズとインバージョンを実装したパッシブスペクトル分散器を備えた、アクティブに安定化されたマッハ・ツェンダー型干渉計に基づいている。
論文 参考訳(メタデータ) (2024-03-18T12:21:37Z) - Hyperspectral and Multispectral Image Fusion Using the Conditional
Denoising Diffusion Probabilistic Model [18.915369996829984]
DDPM-Fus と呼ばれる条件付きデノナイジング拡散確率モデルに基づく深部融合法を提案する。
1つの屋内および2つのリモートセンシングデータセットで行った実験は、他の高度な深層学習に基づく融合法と比較して、提案モデルが優れていることを示す。
論文 参考訳(メタデータ) (2023-07-07T07:08:52Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
サブピクセルレベルのHS超解像フレームワークを提案する。
名前が示すように、DC-Netはまず入力を共通(またはクロスセンサー)とセンサー固有のコンポーネントに分離する。
我々は,CSUネットの裏側に自己教師付き学習モジュールを付加し,素材の整合性を保証し,復元されたHS製品の詳細な外観を向上する。
論文 参考訳(メタデータ) (2022-05-07T23:40:36Z) - Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning [1.8359410255568984]
血管内光コヒーレンス断層撮影(IV OCT)は冠状動脈疾患(CAD)の診断・治療に最適であると考えられる。
高分解能と高速走査率のトレードオフがある。
本稿では,スペクトル領域と空間領域の両方でサンプリングプロセスをダウンスケールするスペクトル空間取得手法を提案する。
論文 参考訳(メタデータ) (2022-04-25T16:37:25Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Deep Learning Approach for Hyperspectral Image Demosaicking, Spectral
Correction and High-resolution RGB Reconstruction [3.0478210530038443]
教師付き学習手法を用いたハイパースペクトル画像のスナップショット化のための深層学習に基づく画像復号アルゴリズムを提案する。
医用画像が公開されていないため,既存の医用画像データセットからのスナップショット画像をシミュレートする合成画像生成手法が提案されている。
得られたデシック画像は定量的かつ質的に評価され、画像品質の明確な改善が示される。
論文 参考訳(メタデータ) (2021-09-03T09:50:03Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - LADMM-Net: An Unrolled Deep Network For Spectral Image Fusion From
Compressive Data [6.230751621285322]
ハイパースペクトル(HS)およびマルチスペクトル(MS)画像融合は、低空間分解能HS画像と低スペクトル分解能MS画像から高分解能スペクトル画像を推定することを目的とする。
本研究では,HSおよびMS圧縮測定による融合問題の解法として,アルゴリズムアンロール法に基づくディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-01T12:04:42Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。