論文の概要: Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition
- arxiv url: http://arxiv.org/abs/2103.13909v1
- Date: Thu, 25 Mar 2021 15:20:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:20:44.914825
- Title: Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition
- Title(参考訳): スペクトルCT多元分解のためのサブサンプリングニュートン法による正則化
- Authors: Alessandro Perelli, Martin S. Andersen
- Abstract要約: スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
- 参考スコア(独自算出の注目度): 78.37855832568569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral Computed Tomography (CT) is an emerging technology that enables to
estimate the concentration of basis materials within a scanned object by
exploiting different photon energy spectra. In this work, we aim at efficiently
solving a model-based maximum-a-posterior problem to reconstruct
multi-materials images with application to spectral CT. In particular, we
propose to solve a regularized optimization problem based on a plug-in
image-denoising function using a randomized second order method. By
approximating the Newton step using a sketching of the Hessian of the
likelihood function, it is possible to reduce the complexity while retaining
the complex prior structure given by the data-driven regularizer. We exploit a
non-uniform block sub-sampling of the Hessian with inexact but efficient
Conjugate gradient updates that require only Jacobian-vector products for
denoising term. Finally, we show numerical and experimental results for
spectral CT materials decomposition.
- Abstract(参考訳): 分光CT(Spectral Computed Tomography)は、異なる光子エネルギースペクトルを利用して走査対象物中の基底物質の濃度を推定できる新興技術である。
本研究では,マルチマテリアル画像の再構成とスペクトルCTへの応用をモデルベースで効率的に行うことを目的とする。
特に,ランダム化二階法を用いて,プラグインイメージデオライズ関数に基づく正則化最適化問題を解くことを提案する。
確率関数のヘシアンのスケッチを用いてニュートンステップを近似することにより、データ駆動正規化器によって与えられる複雑な事前構造を維持しながら複雑さを低減できる。
我々は,非一様ブロックのヘッセン部分サンプリングを,ジャコビアンベクトル積のみを必要とする非コンパクトだが効率的な共役勾配更新で活用する。
最後に,スペクトルct材料の分解に関する数値的および実験的結果を示す。
関連論文リスト
- Deep-learning-based decomposition of overlapping-sparse images: application at the vertex of neutrino interactions [2.5521723486759407]
本稿では,深層学習の力を利用して,多次元重なり合うスパース画像中の個々の物体を正確に抽出する手法を提案する。
これは、イメージング検出器から得られるオーバーレイド素粒子を分解した高エネルギー物理学の直接的な応用である。
論文 参考訳(メタデータ) (2023-10-30T16:12:25Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
本稿では,効率的な画像生成のための拡散モデル(ADP-DM)の高精度なデータフリーポストトレーニング量子化フレームワークを提案する。
提案手法は, 拡散モデルの学習後の量子化を, 同様の計算コストで, 非常に大きなマージンで高速化する。
論文 参考訳(メタデータ) (2023-05-30T04:00:35Z) - Unsupervised denoising for sparse multi-spectral computed tomography [2.969056717104372]
我々は,64チャンネルPCD-CTのスパース測定から高品質な再構成を実現するための課題に対して,学習に基づく改善が適しているかを検討した。
本稿では, 再構成における異なるフィルタ関数と, スペクトルチャネルと核ノルムとの明示的な結合を利用して, 教師なしのデノベーションとアーティファクトの除去手法を提案する。
論文 参考訳(メタデータ) (2022-11-02T14:36:24Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - LADMM-Net: An Unrolled Deep Network For Spectral Image Fusion From
Compressive Data [6.230751621285322]
ハイパースペクトル(HS)およびマルチスペクトル(MS)画像融合は、低空間分解能HS画像と低スペクトル分解能MS画像から高分解能スペクトル画像を推定することを目的とする。
本研究では,HSおよびMS圧縮測定による融合問題の解法として,アルゴリズムアンロール法に基づくディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-01T12:04:42Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Fourth-Order Nonlocal Tensor Decomposition Model for Spectral Computed
Tomography [20.03088101097943]
分光CT(Spectral Computed Tomography)は、光子計数検出器(PCD)を用いて、異なるエネルギービンからのスペクトル像を再構成することができる。
スペクトル分率の限られた光子と計数率により、再構成されたスペクトル画像は通常、ひどいノイズに悩まされる。
本稿では,スペクトルCT画像再構成(FONT-SIR)のための4階非局所テンソル分解モデルを提案する。
論文 参考訳(メタデータ) (2020-10-27T15:14:36Z) - A novel deep learning-based method for monochromatic image synthesis
from spectral CT using photon-counting detectors [7.190103828139802]
シングラム領域で動作する深層学習に基づく単色画像合成法を提案する。
本手法は,PCDを装着したコーンビームCT(CBCT)システムを用いて検討した。
論文 参考訳(メタデータ) (2020-07-20T03:44:57Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。