論文の概要: LT-Net: Label Transfer by Learning Reversible Voxel-wise Correspondence
for One-shot Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2003.07072v3
- Date: Fri, 20 Mar 2020 04:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 03:32:31.182215
- Title: LT-Net: Label Transfer by Learning Reversible Voxel-wise Correspondence
for One-shot Medical Image Segmentation
- Title(参考訳): LT-Net:ワンショット医用画像セグメンテーションのための可逆ボクセル対応学習によるラベル転送
- Authors: Shuxin Wang, Shilei Cao, Dong Wei, Renzhen Wang, Kai Ma, Liansheng
Wang, Deyu Meng, and Yefeng Zheng
- Abstract要約: 医用画像における手動アノテーションの負担を軽減するため, ワンショットセグメンテーション手法を提案する。
第一の考え方は、単発セグメンテーションを古典的なアトラスに基づくセグメンテーション問題として扱うことである。
深層学習に基づくワンショットセグメンテーション法と古典的マルチアトラスセグメンテーション法に比較して,本手法が優れていることを示す。
- 参考スコア(独自算出の注目度): 52.2074595581139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a one-shot segmentation method to alleviate the burden of manual
annotation for medical images. The main idea is to treat one-shot segmentation
as a classical atlas-based segmentation problem, where voxel-wise
correspondence from the atlas to the unlabelled data is learned. Subsequently,
segmentation label of the atlas can be transferred to the unlabelled data with
the learned correspondence. However, since ground truth correspondence between
images is usually unavailable, the learning system must be well-supervised to
avoid mode collapse and convergence failure. To overcome this difficulty, we
resort to the forward-backward consistency, which is widely used in
correspondence problems, and additionally learn the backward correspondences
from the warped atlases back to the original atlas. This cycle-correspondence
learning design enables a variety of extra, cycle-consistency-based supervision
signals to make the training process stable, while also boost the performance.
We demonstrate the superiority of our method over both deep learning-based
one-shot segmentation methods and a classical multi-atlas segmentation method
via thorough experiments.
- Abstract(参考訳): 医療画像の手動アノテーションの負担を軽減するためのワンショットセグメンテーション手法を提案する。
第一の考え方は、単発セグメンテーションを古典的なアトラスに基づくセグメンテーション問題として扱うことである。
その後、アトラスのセグメンテーションラベルを学習対応でラベルなしデータに転送することができる。
しかし、画像間の地上の真実対応は通常利用できないため、学習システムはモード崩壊や収束失敗を避けるために十分に制御されなければならない。
この難しさを克服するために、対応問題に広く用いられている前方整合性を活用し、歪んだアトラスから元のアトラスへの後方整合性も学習する。
このサイクル対応学習設計により、様々なサイクル整合性に基づく監視信号がトレーニングプロセスを安定させ、性能を向上させることができる。
深層学習に基づくワンショットセグメンテーション法と古典的マルチアトラスセグメンテーション法に比較して,本手法が優れていることを示す。
関連論文リスト
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Semantic Contrastive Bootstrapping for Single-positive Multi-label
Recognition [36.3636416735057]
本研究では,意味的コントラスト型ブートストラップ法(Scob)を用いて,オブジェクト間の関係を徐々に回復する手法を提案する。
次に、アイコン的オブジェクトレベルの表現を抽出する再帰的セマンティックマスク変換器を提案する。
大規模な実験結果から,提案手法が最先端のモデルを超えていることが示唆された。
論文 参考訳(メタデータ) (2023-07-15T01:59:53Z) - Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
マスクの提案モデルは、ゼロショットセマンティックセグメンテーションの性能を大幅に改善した。
トレーニング中にバックグラウンドを埋め込むことは問題であり、結果として得られたモデルが過剰に学習し、正しいラベルではなく、すべての見えないクラスをバックグラウンドクラスとして割り当てる傾向がある。
本稿では,学習中の背景埋め込みの使用を回避し,テキスト埋め込みとマスク提案のセマンティックな関係を類似度スコアのランク付けにより活用する新しいクラス拡張損失を提案する。
論文 参考訳(メタデータ) (2023-01-18T06:55:02Z) - Robust One-shot Segmentation of Brain Tissues via Image-aligned Style
Transformation [13.430851964063534]
本稿では,脳組織のワンショットセグメンテーションのための2モデル反復学習を強化するために,新しい画像整列型変換を提案する。
2つの公開データセットによる実験結果から,1)完全教師付き手法と比較して,提案手法の競合セグメンテーション性能が向上し,2)Diceの平均値が4.67%向上した他の最先端技術よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-26T09:14:01Z) - POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring [3.4253416336476246]
半教師付き学習(SSL)では、ラベルのないデータを使用して、画像の不足と、未確認領域へのメソッドの一般化の欠如を補う。
画像分割のための整合正則化と擬似ラベル化を組み合わせた新しい手法POPCORNを提案する。
論文 参考訳(メタデータ) (2021-09-13T23:36:36Z) - Flip Learning: Erase to Segment [65.84901344260277]
弱い教師付きセグメンテーション(WSS)は、時間と面倒な手作業のアノテーションを減らすのに役立ちます。
ボックスアノテーションのみを必要とするFlip Learningという,斬新で汎用的なWSSフレームワークを提案する。
提案手法は,完全教師付き学習と弱教師付き学習のギャップを狭める大きな可能性を示す。
論文 参考訳(メタデータ) (2021-08-02T09:56:10Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
本稿では,学習ラベルの提供するものよりも細かな表現を学習する問題に対処する。
粗いラベルと下層の細粒度潜在空間を併用することにより、カテゴリレベルの検索手法の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-25T19:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。