論文の概要: Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images
- arxiv url: http://arxiv.org/abs/2103.02083v1
- Date: Tue, 2 Mar 2021 23:14:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 15:01:42.100775
- Title: Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images
- Title(参考訳): OCT画像における網膜層の不確実性誘導半監督セグメンテーション
- Authors: Suman Sedai, Bhavna Antony, Ravneet Rai, Katie Jones, Hiroshi
Ishikawa, Joel Schuman, Wollstein Gadi and Rahil Garnavi
- Abstract要約: セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
- 参考スコア(独自算出の注目度): 4.046207281399144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks have shown outstanding performance in
medical image segmentation tasks. The usual problem when training supervised
deep learning methods is the lack of labeled data which is time-consuming and
costly to obtain. In this paper, we propose a novel uncertainty-guided
semi-supervised learning based on a student-teacher approach for training the
segmentation network using limited labeled samples and a large number of
unlabeled images. First, a teacher segmentation model is trained from the
labeled samples using Bayesian deep learning. The trained model is used to
generate soft segmentation labels and uncertainty maps for the unlabeled set.
The student model is then updated using the softly segmented samples and the
corresponding pixel-wise confidence of the segmentation quality estimated from
the uncertainty of the teacher model using a newly designed loss function.
Experimental results on a retinal layer segmentation task show that the
proposed method improves the segmentation performance in comparison to the
fully supervised approach and is on par with the expert annotator. The proposed
semi-supervised segmentation framework is a key contribution and applicable for
biomedical image segmentation across various imaging modalities where access to
annotated medical images is challenging
- Abstract(参考訳): 深層畳み込みニューラルネットワークは医用画像分割タスクにおいて優れた性能を示している。
教師あり深層学習法を訓練する場合の一般的な問題は、時間と費用がかかるラベル付きデータの欠如である。
本稿では,限定ラベル付きサンプルと多数の未ラベル画像を用いてセグメンテーションネットワークを訓練する学生-教員アプローチに基づく,新しい不確実性誘導半教師付き学習を提案する。
まず,教師セグメンテーションモデルをベイズ深層学習を用いてラベル付きサンプルから学習する。
トレーニングされたモデルは、未ラベル集合に対するソフトセグメンテーションラベルと不確実性マップを生成するために使用される。
教師モデルの不確実性から推定されるセグメント品質のピクセル単位の信頼度を、新たに設計されたロス関数を用いて、ソフトセグメント化サンプルを用いて更新する。
網膜層セグメンテーションタスクの実験結果から,提案手法は完全教師付きアプローチと比較してセグメンテーション性能を向上し,エキスパートアノテータと同等であることがわかった。
提案する半教師付きセグメンテーションフレームワークは,アノテートされた医用画像へのアクセスが困難である様々な画像モダリティのバイオメディカルイメージセグメンテーションに有効である。
関連論文リスト
- Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Human-machine Interactive Tissue Prototype Learning for Label-efficient
Histopathology Image Segmentation [18.755759024796216]
ディープ・ニューラル・ネットワークは、画像セグメンテーションを大幅に進歩させたが、通常は豊富なデータを必要とする。
本稿では,ラベル効率のよい組織原型辞書構築パイプラインを提案し,得られた原型を用いて病理組織像のセグメンテーションを導くことを提案する。
人間の機械的対話型組織プロトタイプ学習法は,完全教師付きベースラインと同等のセグメンテーション性能が得られることを示す。
論文 参考訳(メタデータ) (2022-11-26T06:17:21Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
限られたラベルを持つ医用画像セグメンテーションにおける半教師あり学習の性能向上を目指す。
我々は、ラベルのない画像に対照的な損失を与えることによって、特徴レベルで潜在表現を直接学習する。
我々はMRIとCTのセグメンテーションデータセットの実験を行い、提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-27T03:27:58Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical
Image Segmentation [30.644905857223474]
本稿では,医療画像セグメンテーションのためのラベル付きデータと大量のラベル付き画像を用いて,ニューラルネットワークを訓練するための半教師付きアプローチを提案する。
未ラベル画像に対する新たな擬似ラベル(いわゆる自己ループ不確実性)を基盤として、トレーニングセットを増強し、セグメンテーション精度を高める。
論文 参考訳(メタデータ) (2020-07-20T02:52:07Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。