論文の概要: Radiomic feature selection for lung cancer classifiers
- arxiv url: http://arxiv.org/abs/2003.07098v1
- Date: Mon, 16 Mar 2020 10:20:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 03:49:10.363500
- Title: Radiomic feature selection for lung cancer classifiers
- Title(参考訳): 肺癌分類器の放射線学的特徴選択
- Authors: Hina Shakir, Haroon Rasheed and Tariq Mairaj Rasool Khan
- Abstract要約: 本研究では,2,4,8,12,16,20の高度にランク付けされた特徴を用いて,Naive Bayes and Support Vector Machine(SVM)の分類性能について検討した。
さらに、SVMやネイブベイズの放射能特性を低下させることで、非常に優れた結節分類が達成できることを明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods with quantitative imaging features integration have
recently gained a lot of attention for lung nodule classification. However,
there is a dearth of studies in the literature on effective features ranking
methods for classification purpose. Moreover, optimal number of features
required for the classification task also needs to be evaluated. In this study,
we investigate the impact of supervised and unsupervised feature selection
techniques on machine learning methods for nodule classification in Computed
Tomography (CT) images. The research work explores the classification
performance of Naive Bayes and Support Vector Machine(SVM) when trained with 2,
4, 8, 12, 16 and 20 highly ranked features from supervised and unsupervised
ranking approaches. The best classification results were achieved using SVM
trained with 8 radiomic features selected from supervised feature ranking
methods and the accuracy was 100%. The study further revealed that very good
nodule classification can be achieved by training any of the SVM or Naive Bayes
with a fewer radiomic features. A periodic increment in the number of radiomic
features from 2 to 20 did not improve the classification results whether the
selection was made using supervised or unsupervised ranking approaches.
- Abstract(参考訳): 近年,肺結節分類において定量的画像特徴統合を用いた機械学習が注目されている。
しかし,分類目的の効果的な特徴分類法に関する文献には多くの研究がなされている。
また,分類作業に必要な特徴の最適な数も評価する必要がある。
本研究では,CT画像の結節分類における教師付き特徴選択手法が機械学習手法に与える影響について検討した。
本研究では,2,4,8,12,16,20の高度にランク付けされた特徴を教師なし,教師なしのランク付けアプローチから学習した上で,SVM(Naive Bayes and Support Vector Machine)の分類性能について検討する。
教師付き特徴ランキング法から選択した8つの放射能特徴を訓練したSVMを用いて,最高の分類結果を得た。
さらに、SVMやネイブベイズの放射能特性を低下させることで、非常に優れた結節分類が達成できることを明らかにした。
2から20までの放射能特徴数の周期的な増加は,教師付きか教師なしかの選択による分類結果の改善には至らなかった。
関連論文リスト
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Self-Supervised Pretraining Improves Performance and Inference
Efficiency in Multiple Lung Ultrasound Interpretation Tasks [65.23740556896654]
肺超音波検査における複数分類課題に適用可能なニューラルネットワーク特徴抽出器を,自己指導型プレトレーニングで作成できるかどうかを検討した。
3つの肺超音波のタスクを微調整すると、事前訓練されたモデルにより、各テストセットの受信操作曲線(AUC)における平均クロスタスク面積は、それぞれ0.032と0.061に改善された。
論文 参考訳(メタデータ) (2023-09-05T21:36:42Z) - Classification in Histopathology: A unique deep embeddings extractor for
multiple classification tasks [0.0]
私たちは、イメージを深い特徴に変換するために、訓練済みのディープ埋め込み抽出器を1つ使用しています。
また、各分類タスクに対して、これらの埋め込みに対して、小さな専用分類ヘッドをトレーニングします。
このアプローチは、さまざまなタスクに対して、トレーニング済みの1つのディープネットワークを再利用する機能など、いくつかのメリットを提供します。
論文 参考訳(メタデータ) (2023-03-09T11:19:42Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
論文 参考訳(メタデータ) (2022-03-21T09:57:20Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - On the utility of power spectral techniques with feature selection
techniques for effective mental task classification in noninvasive BCI [19.19039983741124]
本稿では,メンタルタスク分類において,関連性および非関連性のあるスペクトル特徴を選択する手法を提案する。
その結果,メンタルタスク分類のための学習モデルの性能は大幅に向上した。
論文 参考訳(メタデータ) (2021-11-16T00:27:53Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - DeepCervix: A Deep Learning-based Framework for the Classification of
Cervical Cells Using Hybrid Deep Feature Fusion Techniques [14.208643185430219]
女性の中で最も多い致死性癌の1つである頸部がんは、早期に再発性病変を検出するために、定期的な検診によって予防することができる。
手動スクリーニングの実践を改善するため, 機械学習(ML)と深層学習(DL)を用いたコンピュータ支援診断(CAD)システムを用いて, 頚部乳頭細胞の分類を行った。
本研究は, dlに基づくハイブリッド型深部機能融合(hdff)技術を提案し, 頸椎細胞を正確に分類する。
論文 参考訳(メタデータ) (2021-02-24T10:34:51Z) - Multiclass Wound Image Classification using an Ensemble Deep CNN-based
Classifier [2.07811670193148]
創傷画像をマルチクラスに分類するためのアンサンブルディープ畳み込みニューラルネットワークに基づく分類器を開発した。
2次分類では96.4%,94.28%,3次分類では91.9%,87.7%であった。
論文 参考訳(メタデータ) (2020-10-19T15:20:12Z) - Latent regularization for feature selection using kernel methods in
tumor classification [1.9078991171384014]
特徴選択は、腫瘍の分類に役立つ重要な遺伝子を選択するための有用なアプローチである。
本稿では,遺伝子とカスタムカーネルのサブセットを減らし,マルチカーネル学習に基づく特徴選択手法を提案する。
新しい未確認試験試料の腫瘍分類性能により, 一般化能力の向上と評価を行った。
論文 参考訳(メタデータ) (2020-04-10T00:46:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。