論文の概要: Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis
- arxiv url: http://arxiv.org/abs/2203.10837v1
- Date: Mon, 21 Mar 2022 09:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 19:23:22.668594
- Title: Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis
- Title(参考訳): アルツハイマー病診断にともなう自然発話分析におけるマルチクラス対ワンクラス分類器
- Authors: K. L\'opez-de-Ipi\~na, Marcos Faundez-Zanuy, Jordi Sol\'e-Casals,
Fernando Zelarin, Pilar Calvo
- Abstract要約: 本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Most of medical developments require the ability to identify samples that are
anomalous with respect to a target group or control group, in the sense they
could belong to a new, previously unseen class or are not class data. In this
case when there are not enough data to train two-class One-class classification
appear like an available solution. On the other hand non-linear approaches
could give very useful information. The aim of our project is to contribute to
earlier diagnosis of AD and better estimates of its severity by using automatic
analysis performed through new biomarkers extracted from speech signal. The
methods selected in this case are speech biomarkers oriented to Spontaneous
Speech and Emotional Response Analysis. In this approach One-class classifiers
and two-class classifiers are analyzed. The use of information about outlier
and Fractal Dimension features improves the system performance.
- Abstract(参考訳): ほとんどの医学開発では、新しい、以前は目に見えないクラスに属したり、クラスデータではないという意味で、ターゲットグループまたはコントロールグループに関して異常なサンプルを識別する能力を必要とする。
この場合、2つのクラスの1クラス分類をトレーニングするのに十分なデータがない場合、利用可能なソリューションのように見える。
一方、非線形アプローチは非常に有用な情報を提供することができる。
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いた自動分析により,adの早期診断とその重症度の推定に寄与することである。
今回選択した手法は,自発音声と感情応答分析を指向した音声バイオマーカーである。
このアプローチでは、一級分類器と二級分類器が解析される。
外れ値やフラクタル次元に関する情報を利用することで、システムパフォーマンスが向上する。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Interpretable Diabetic Retinopathy Diagnosis based on Biomarker
Activation Map [2.6170980960630037]
生成的対角学習に基づく新しいバイオマーカー活性化マップ(BAM)フレームワークを提案する。
456個の黄斑スキャンを含むデータセットを、現在の臨床基準に基づいて非参照型または参照型DRとして評価した。
生成したBAMは非灌流領域や網膜液を含む既知の病態の特徴を強調した。
論文 参考訳(メタデータ) (2022-12-13T00:45:46Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Cancer Subtyping by Improved Transcriptomic Features Using Vector
Quantized Variational Autoencoder [10.835673227875615]
本稿では,Vector Quantized Variational AutoEncoder (VQ-VAE)を提案する。
VQ-VAEは厳密な仮定を課さないため、その潜在機能は入力のより良い表現であり、メインストリームのクラスタリング手法で優れたクラスタリング性能を得ることができる。
論文 参考訳(メタデータ) (2022-07-20T09:47:53Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Exemplar Auditing for Multi-Label Biomedical Text Classification [0.4873362301533824]
我々は、最近提案されたゼロショットシーケンスラベリング手法「畳み込み分解による教師付きラベリング」を一般化する。
この手法は"イントロスペクション(introspection)"と分類され、推論時間予測のきめ細かい特徴を最も近い隣人に関連付ける。
提案手法は,医療従事者に対して,モデルの予測を駆動する健全な特徴を理解する上で,競争力のある分類モデルと尋問メカニズムの両方を提供する。
論文 参考訳(メタデータ) (2020-04-07T02:54:20Z) - Optimization of Genomic Classifiers for Clinical Deployment: Evaluation
of Bayesian Optimization to Select Predictive Models of Acute Infection and
In-Hospital Mortality [0.0]
血液から特定の遺伝子の発現レベルを定量化することにより、患者の免疫反応を特徴づけることにより、両方のタスクを遂行する潜在的によりタイムリーで正確な手段を示す。
機械学習手法は、デプロイ対応の分類モデルの開発にこの‘ホスト応答’を活用するプラットフォームを提供する。
急性感染症の診断分類器の開発におけるHO法と29の診断マーカーの遺伝子発現による院内死亡率の比較を行った。
論文 参考訳(メタデータ) (2020-03-27T10:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。