論文の概要: GAMI-Net: An Explainable Neural Network based on Generalized Additive
Models with Structured Interactions
- arxiv url: http://arxiv.org/abs/2003.07132v2
- Date: Wed, 2 Jun 2021 15:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 02:55:47.170653
- Title: GAMI-Net: An Explainable Neural Network based on Generalized Additive
Models with Structured Interactions
- Title(参考訳): GAMI-Net:構造化相互作用を持つ一般化付加モデルに基づく説明可能なニューラルネットワーク
- Authors: Zebin Yang, Aijun Zhang, Agus Sudjianto
- Abstract要約: 構造的相互作用を持つ一般化付加モデル(GAMI-Net)に基づく説明可能なニューラルネットワークを提案し,予測精度とモデル解釈可能性とのバランスを良好に追求する。
GAMI-Net(英語版)は、複数の添加物を持つ非絡み合ったフィードフォワードネットワークである。
合成関数と実世界のデータセットの双方に関する数値実験により,提案モデルが優れた解釈性を有することが示された。
- 参考スコア(独自算出の注目度): 5.8010446129208155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lack of interpretability is an inevitable problem when using neural
network models in real applications. In this paper, an explainable neural
network based on generalized additive models with structured interactions
(GAMI-Net) is proposed to pursue a good balance between prediction accuracy and
model interpretability. GAMI-Net is a disentangled feedforward network with
multiple additive subnetworks; each subnetwork consists of multiple hidden
layers and is designed for capturing one main effect or one pairwise
interaction. Three interpretability aspects are further considered, including
a) sparsity, to select the most significant effects for parsimonious
representations; b) heredity, a pairwise interaction could only be included
when at least one of its parent main effects exists; and c) marginal clarity,
to make main effects and pairwise interactions mutually distinguishable. An
adaptive training algorithm is developed, where main effects are first trained
and then pairwise interactions are fitted to the residuals. Numerical
experiments on both synthetic functions and real-world datasets show that the
proposed model enjoys superior interpretability and it maintains competitive
prediction accuracy in comparison to the explainable boosting machine and other
classic machine learning models.
- Abstract(参考訳): 実際のアプリケーションでニューラルネットワークモデルを使用する場合、解釈可能性の欠如は避けられない問題である。
本稿では,構造的相互作用を持つ一般化付加モデル(GAMI-Net)に基づく説明可能なニューラルネットワークを提案し,予測精度とモデル解釈可能性とのバランスを良好に追求する。
gami-netは複数のサブネットワークを付加した分断フィードフォワードネットワークであり、各サブネットワークは複数の隠れレイヤで構成され、1つの主要な効果または1つの対の相互作用をキャプチャするように設計されている。
さらに3つの解釈可能性の側面が検討されています
a) 控えめな表現に対して最も重要な効果を選択すること
b) 遺伝性,ペアワイズ相互作用は,少なくともその親の主要効果の少なくとも1つが存在する場合にのみ含むことができる。
c) 主作用と対角的相互作用を相互に区別可能な限界明快さ
最初に主要な効果を訓練し、その後にペアワイズ相互作用を残差に適合させる適応訓練アルゴリズムを開発した。
合成関数と実世界のデータセットの両方の数値実験により,提案モデルが優れた解釈性を有し,説明可能なブースティングマシンや他の古典的機械学習モデルと比較して,競合予測精度を維持していることが示された。
関連論文リスト
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordancesはアクション、オブジェクト、エフェクト間の関係の基本的な記述である。
本稿では,世界を探究し,その感覚経験から自律的にこれらの余裕を学習するエンボディエージェントの問題にアプローチする。
論文 参考訳(メタデータ) (2024-02-08T22:05:45Z) - InterpretCC: Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
ニューラルネットワークの解釈性は、3つの重要な要件間のトレードオフである。
本稿では,人間中心の解釈可能性を保証する,解釈可能なニューラルネットワークのファミリであるInterpretCCを提案する。
論文 参考訳(メタデータ) (2024-02-05T11:55:50Z) - Improving Neural Additive Models with Bayesian Principles [54.29602161803093]
ニューラル加算モデル(NAM)は、個別の加算サブネットワークでキャリブレーションされた入力特徴を扱うことにより、ディープニューラルネットワークの透明性を高める。
本研究では,Laplace-approximated NAM (LA-NAMs) を開発した。
論文 参考訳(メタデータ) (2023-05-26T13:19:15Z) - GroupNet: Multiscale Hypergraph Neural Networks for Trajectory
Prediction with Relational Reasoning [37.64048110462638]
GroupNetは、ペアワイドとグループワイドの両方のインタラクションをキャプチャする、マルチスケールのハイパーグラフニューラルネットワークである。
CVAEに基づく予測システムと従来の最先端予測システムの両方にGroupNetを適用した。
CVAEに基づく予測システムであるGroupNetは,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-19T09:36:20Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
本稿では、視覚的手がかりから部分全体階層を表現できるフレームワークであるAgglomeratorについて述べる。
本研究では,SmallNORB,MNIST,FashionMNIST,CIFAR-10,CIFAR-100などの共通データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2022-03-07T10:56:13Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z) - Feature Interaction based Neural Network for Click-Through Rate
Prediction [5.095988654970358]
本稿では,3次元関係テンソルを用いて特徴相互作用をモデル化可能な特徴相互作用ベースニューラルネットワーク(FINN)を提案する。
我々のディープFINNモデルは、PNNやDeepFMのような最先端のディープモデルよりも優れていることを示す。
また、我々のモデルは、機能相互作用を効果的に学習し、実世界のデータセットでより良いパフォーマンスを達成することができることを示している。
論文 参考訳(メタデータ) (2020-06-07T03:53:24Z) - Adaptive Explainable Neural Networks (AxNNs) [8.949704905866888]
我々は、予測性能とモデル解釈可能性の両目標を達成するために、Adaptive Explainable Neural Networks (AxNN) と呼ばれる新しいフレームワークを開発した。
予測性能向上のために,一般化された付加的モデルネットワークと付加的インデックスモデルからなる構造化ニューラルネットワークを構築した。
本稿では,AxNNの結果を主効果と高次相互作用効果に分解する方法を示す。
論文 参考訳(メタデータ) (2020-04-05T23:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。