論文の概要: Cognitive Networks and Performance Drive fMRI-Based State Classification Using DNN Models
- arxiv url: http://arxiv.org/abs/2409.00003v1
- Date: Wed, 14 Aug 2024 15:25:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:50:41.149366
- Title: Cognitive Networks and Performance Drive fMRI-Based State Classification Using DNN Models
- Title(参考訳): DNNモデルを用いた認知ネットワークとfMRIによる状態分類
- Authors: Murat Kucukosmanoglu, Javier O. Garcia, Justin Brooks, Kanika Bansal,
- Abstract要約: 我々は、個々の認知状態を分類するために、構造的に異なる2つのDNNモデルと相補的なDNNモデルを用いる。
アーキテクチャ上の違いにもかかわらず、両者のモデルが常に予測精度と個人の認知性能との間に堅牢な関係を生んでいることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural network (DNN) models have demonstrated impressive performance in various domains, yet their application in cognitive neuroscience is limited due to their lack of interpretability. In this study we employ two structurally different and complementary DNN-based models, a one-dimensional convolutional neural network (1D-CNN) and a bidirectional long short-term memory network (BiLSTM), to classify individual cognitive states from fMRI BOLD data, with a focus on understanding the cognitive underpinnings of the classification decisions. We show that despite the architectural differences, both models consistently produce a robust relationship between prediction accuracy and individual cognitive performance, such that low performance leads to poor prediction accuracy. To achieve model explainability, we used permutation techniques to calculate feature importance, allowing us to identify the most critical brain regions influencing model predictions. Across models, we found the dominance of visual networks, suggesting that task-driven state differences are primarily encoded in visual processing. Attention and control networks also showed relatively high importance, however, default mode and temporal-parietal networks demonstrated negligible contribution in differentiating cognitive states. Additionally, we observed individual trait-based effects and subtle model-specific differences, such that 1D-CNN showed slightly better overall performance, while BiLSTM showed better sensitivity for individual behavior; these initial findings require further research and robustness testing to be fully established. Our work underscores the importance of explainable DNN models in uncovering the neural mechanisms underlying cognitive state transitions, providing a foundation for future work in this domain.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)モデルは、様々な領域で顕著な性能を示してきたが、認知神経科学への応用は、解釈可能性の欠如により限られている。
本研究では,1次元畳み込みニューラルネットワーク (1D-CNN) と双方向長短期記憶ネットワーク (BiLSTM) の2つの構造的・相補的なDNNモデルを用いて,fMRI BOLDデータから個々の認知状態を分類する。
アーキテクチャ上の違いにもかかわらず、どちらのモデルも予測精度と個人の認知性能との間に頑健な関係を保ち、低い性能が予測精度を低下させることを示した。
モデル説明可能性を実現するため,我々は,モデル予測に影響を及ぼす最も重要な脳領域を同定し,特徴の重要度を計算するために置換手法を用いた。
モデル全体では、視覚ネットワークが支配的であり、タスク駆動の状態差が主に視覚処理で符号化されていることが示唆された。
注意と制御のネットワークも比較的重要であったが、デフォルトモードと時空間ネットワークは認知状態の識別に無視できない寄与を示した。
さらに,1D-CNNでは全体の性能がわずかに向上し,BiLSTMでは個人の行動に対する感度が向上した。
我々の研究は、認知状態遷移の基礎となる神経メカニズムを明らかにする上で、説明可能なDNNモデルの重要性を強調し、この領域における将来の研究の基盤を提供する。
関連論文リスト
- Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
本稿では、因果推論理論に基づく新しい手法TRACERを紹介し、DNN決定の根底にある因果ダイナミクスを推定する。
提案手法は入力特徴に系統的に介入し,特定の変化がネットワークを介してどのように伝播するかを観察し,内部の活性化と最終的な出力に影響を与える。
TRACERはさらに、モデルバイアスの可能性のある反ファクトを生成することで説明可能性を高め、誤分類に対する対照的な説明を提供する。
論文 参考訳(メタデータ) (2024-10-07T20:44:53Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Improving Prediction of Cognitive Performance using Deep Neural Networks
in Sparse Data [2.867517731896504]
MIDUS(Midlife in the United States)の観察・コホート研究から得られたデータを用いて,エグゼクティブ機能とエピソード記憶測定をモデル化した。
ディープニューラルネットワーク(DNN)モデルは、認知パフォーマンス予測タスクの中で一貫して最高である。
論文 参考訳(メタデータ) (2021-12-28T22:23:08Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - Object-based attention for spatio-temporal reasoning: Outperforming
neuro-symbolic models with flexible distributed architectures [15.946511512356878]
適切な帰納的バイアスを持つ完全学習型ニューラルネットワークは,従来のニューラルシンボリックモデルよりもかなり優れた性能を示す。
我々のモデルは、自己意識と学習された「ソフト」オブジェクト中心表現の両方を批判的に利用します。
論文 参考訳(メタデータ) (2020-12-15T18:57:40Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
スパイキングニューラルネットワーク(SNN)は、符号化された時間信号で情報を検出するユニークな能力を持つ。
SNNをリカレントニューラルネットワーク(RNN)とみなす支配的アプローチのためのモデルとトレーニングアルゴリズムについてレビューする。
スパイキングニューロンの確率モデルに頼り、勾配推定による局所学習規則の導出を可能にする別のアプローチについて述べる。
論文 参考訳(メタデータ) (2020-10-27T11:47:42Z) - Comparing SNNs and RNNs on Neuromorphic Vision Datasets: Similarities
and Differences [36.82069150045153]
スパイキングニューラルネットワーク(SNN)とリカレントニューラルネットワーク(RNN)は、ニューロモルフィックデータに基づいてベンチマークされる。
本研究では,SNNとRNNをニューロモルフィックデータと比較するための系統的研究を行う。
論文 参考訳(メタデータ) (2020-05-02T10:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。