LAXARY: A Trustworthy Explainable Twitter Analysis Model for
Post-Traumatic Stress Disorder Assessment
- URL: http://arxiv.org/abs/2003.07433v2
- Date: Mon, 20 Jul 2020 08:12:42 GMT
- Title: LAXARY: A Trustworthy Explainable Twitter Analysis Model for
Post-Traumatic Stress Disorder Assessment
- Authors: Mohammad Arif Ul Alam and Dhawal Kapadia
- Abstract summary: We propose LAXARY (Linguistic Analysis-based Exaplainable Inquiry) model to detect and represent PTSD assessment of twitter users.
First, we employ clinically validated survey tools for collecting clinical PTSD assessment data from real twitter users.
Then, we use the PTSD Linguistic Dictionary along with machine learning model to fill up the survey tools towards detecting PTSD status and its intensity of corresponding twitter users.
- Score: 1.776746672434207
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Veteran mental health is a significant national problem as large number of
veterans are returning from the recent war in Iraq and continued military
presence in Afghanistan. While significant existing works have investigated
twitter posts-based Post Traumatic Stress Disorder (PTSD) assessment using
blackbox machine learning techniques, these frameworks cannot be trusted by the
clinicians due to the lack of clinical explainability. To obtain the trust of
clinicians, we explore the big question, can twitter posts provide enough
information to fill up clinical PTSD assessment surveys that have been
traditionally trusted by clinicians? To answer the above question, we propose,
LAXARY (Linguistic Analysis-based Exaplainable Inquiry) model, a novel
Explainable Artificial Intelligent (XAI) model to detect and represent PTSD
assessment of twitter users using a modified Linguistic Inquiry and Word Count
(LIWC) analysis. First, we employ clinically validated survey tools for
collecting clinical PTSD assessment data from real twitter users and develop a
PTSD Linguistic Dictionary using the PTSD assessment survey results. Then, we
use the PTSD Linguistic Dictionary along with machine learning model to fill up
the survey tools towards detecting PTSD status and its intensity of
corresponding twitter users. Our experimental evaluation on 210 clinically
validated veteran twitter users provides promising accuracies of both PTSD
classification and its intensity estimation. We also evaluate our developed
PTSD Linguistic Dictionary's reliability and validity.
Related papers
- LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Automating PTSD Diagnostics in Clinical Interviews: Leveraging Large Language Models for Trauma Assessments [7.219693607724636]
We aim to tackle this shortage by integrating a customized large language model (LLM) into the workflow.
We collect 411 clinician-administered diagnostic interviews and devise a novel approach to obtain high-quality data.
We build a comprehensive framework to automate PTSD diagnostic assessments based on interview contents.
arXiv Detail & Related papers (2024-05-18T05:04:18Z) - A Novel Stochastic Transformer-based Approach for Post-Traumatic Stress Disorder Detection using Audio Recording of Clinical Interviews [3.09988520562118]
Post-traumatic stress disorder (PTSD) is a mental disorder that can be developed after witnessing or experiencing extremely traumatic events.
The Clinician-Administered PTSD Scale (CAPS) and the PTSD Check List for Civilians (PCL-C) interviews are gold standards in the diagnosis of PTSD.
This work proposes a deep learning-based approach that achieves state-of-the-art performances for PTSD detection using audio recordings during clinical interviews.
arXiv Detail & Related papers (2024-03-28T14:11:40Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Survey on Adversarial Attack and Defense for Medical Image Analysis: Methods and Challenges [64.63744409431001]
We present a comprehensive survey on advances in adversarial attacks and defenses for medical image analysis.
For a fair comparison, we establish a new benchmark for adversarially robust medical diagnosis models.
arXiv Detail & Related papers (2023-03-24T16:38:58Z) - PTSD in the Wild: A Video Database for Studying Post-Traumatic Stress
Disorder Recognition in Unconstrained Environments [9.272889136803212]
PTSD is a chronic and mental condition that is developed in response to catastrophic life events.
In this paper, we collect, annotated, and prepared for public distribution a new video database for automatic PTSD diagnosis.
We provide a benchmark for evaluating computer vision and machine learning based approaches on PTSD in the wild dataset.
arXiv Detail & Related papers (2022-09-28T13:30:26Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - Posttraumatic Stress Disorder Hyperarousal Event Detection Using
Smartwatch Physiological and Activity Data [0.0]
Posttraumatic Stress Disorder (PTSD) is a psychiatric condition affecting nearly a quarter of the United States war veterans who return from war zones.
Patients often experience their most severe PTSD symptoms outside of therapy sessions.
Mobile health applications may address this gap, but their effectiveness is limited by the current gap in continuous monitoring and detection capabilities enabling timely intervention.
arXiv Detail & Related papers (2021-09-29T22:24:10Z) - Does BERT Pretrained on Clinical Notes Reveal Sensitive Data? [70.3631443249802]
We design a battery of approaches intended to recover Personal Health Information from a trained BERT.
Specifically, we attempt to recover patient names and conditions with which they are associated.
We find that simple probing methods are not able to meaningfully extract sensitive information from BERT trained over the MIMIC-III corpus of EHR.
arXiv Detail & Related papers (2021-04-15T20:40:05Z) - World Trade Center responders in their own words: Predicting PTSD
symptom trajectories with AI-based language analyses of interviews [6.700088567524812]
This study tested the ability of AI-based language assessments to predict PTSD symptom trajectories among responders.
Cross-sectionally, greater depressive language (beta=0.32; p43) and first-person singular usage (beta=0.31; p44) were associated with increased symptom severity.
Longer words usage (beta=-0.36; p7) and longer words usage (beta=-0.36; p7) predicted improvement.
arXiv Detail & Related papers (2020-11-12T15:57:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.