Automating PTSD Diagnostics in Clinical Interviews: Leveraging Large Language Models for Trauma Assessments
- URL: http://arxiv.org/abs/2405.11178v1
- Date: Sat, 18 May 2024 05:04:18 GMT
- Title: Automating PTSD Diagnostics in Clinical Interviews: Leveraging Large Language Models for Trauma Assessments
- Authors: Sichang Tu, Abigail Powers, Natalie Merrill, Negar Fani, Sierra Carter, Stephen Doogan, Jinho D. Choi,
- Abstract summary: We aim to tackle this shortage by integrating a customized large language model (LLM) into the workflow.
We collect 411 clinician-administered diagnostic interviews and devise a novel approach to obtain high-quality data.
We build a comprehensive framework to automate PTSD diagnostic assessments based on interview contents.
- Score: 7.219693607724636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The shortage of clinical workforce presents significant challenges in mental healthcare, limiting access to formal diagnostics and services. We aim to tackle this shortage by integrating a customized large language model (LLM) into the workflow, thus promoting equity in mental healthcare for the general population. Although LLMs have showcased their capability in clinical decision-making, their adaptation to severe conditions like Post-traumatic Stress Disorder (PTSD) remains largely unexplored. Therefore, we collect 411 clinician-administered diagnostic interviews and devise a novel approach to obtain high-quality data. Moreover, we build a comprehensive framework to automate PTSD diagnostic assessments based on interview contents by leveraging two state-of-the-art LLMs, GPT-4 and Llama-2, with potential for broader clinical diagnoses. Our results illustrate strong promise for LLMs, tested on our dataset, to aid clinicians in diagnostic validation. To the best of our knowledge, this is the first AI system that fully automates assessments for mental illness based on clinician-administered interviews.
Related papers
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Large Language Models for Mental Health Diagnostic Assessments: Exploring The Potential of Large Language Models for Assisting with Mental Health Diagnostic Assessments -- The Depression and Anxiety Case [5.166889174594258]
Large language models (LLMs) are increasingly attracting the attention of healthcare professionals.
This paper examines the diagnostic assessment processes described in the Patient Health Questionnaire-9 (PHQ-9) for major depressive disorder (MDD) and the Generalized Anxiety Disorder-7 (GAD-7) questionnaire for generalized anxiety disorder (GAD)
For fine-tuning, we utilize the Mentalllama and Llama models, while for prompting, we experiment with proprietary models like GPT-3.5 and GPT-4o, as well as open-source models such as llama-3.1-8b and mixtral-8x7b.
arXiv Detail & Related papers (2025-01-02T15:34:02Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.
We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models [32.85606857702375]
We aim at evaluating the reasoning ability and interpretability of large language models (LLMs) compared to human doctors.
The diagnostic reasoning dataset for clinical notes (DiReCT) contains 511 clinical notes, each meticulously annotated by physicians.
arXiv Detail & Related papers (2024-08-04T05:15:02Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - A Dual-Prompting for Interpretable Mental Health Language Models [11.33857985668663]
The CLPsych 2024 Shared Task aims to enhance the interpretability of Large Language Models (LLMs)
We propose a dual-prompting approach: (i) Knowledge-aware evidence extraction by leveraging the expert identity and a suicide dictionary with a mental health-specific LLM; and (ii) summarization by employing an LLM-based consistency evaluator.
arXiv Detail & Related papers (2024-02-20T06:18:02Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
We propose a framework to model the diagnosis process in the real world by adaptively fusing probability distributions of agents over potential diseases.
Our approach requires significantly less parameter updating and training time, enhancing efficiency and practical utility.
arXiv Detail & Related papers (2024-01-29T12:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.