Detecting PTSD in Clinical Interviews: A Comparative Analysis of NLP Methods and Large Language Models
- URL: http://arxiv.org/abs/2504.01216v1
- Date: Tue, 01 Apr 2025 22:06:28 GMT
- Title: Detecting PTSD in Clinical Interviews: A Comparative Analysis of NLP Methods and Large Language Models
- Authors: Feng Chen, Dror Ben-Zeev, Gillian Sparks, Arya Kadakia, Trevor Cohen,
- Abstract summary: Post-Traumatic Stress Disorder (PTSD) remains underdiagnosed in clinical settings.<n>This study evaluates natural language processing approaches for detecting PTSD from clinical interview transcripts.
- Score: 6.916082619621498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-Traumatic Stress Disorder (PTSD) remains underdiagnosed in clinical settings, presenting opportunities for automated detection to identify patients. This study evaluates natural language processing approaches for detecting PTSD from clinical interview transcripts. We compared general and mental health-specific transformer models (BERT/RoBERTa), embedding-based methods (SentenceBERT/LLaMA), and large language model prompting strategies (zero-shot/few-shot/chain-of-thought) using the DAIC-WOZ dataset. Domain-specific models significantly outperformed general models (Mental-RoBERTa F1=0.643 vs. RoBERTa-base 0.485). LLaMA embeddings with neural networks achieved the highest performance (F1=0.700). Zero-shot prompting using DSM-5 criteria yielded competitive results without training data (F1=0.657). Performance varied significantly across symptom severity and comorbidity status, with higher accuracy for severe PTSD cases and patients with comorbid depression. Our findings highlight the potential of domain-adapted embeddings and LLMs for scalable screening while underscoring the need for improved detection of nuanced presentations and offering insights for developing clinically viable AI tools for PTSD assessment.
Related papers
- Cognitive-Mental-LLM: Evaluating Reasoning in Large Language Models for Mental Health Prediction via Online Text [0.0]
This study evaluates structured reasoning techniques-Chain-of-Thought (CoT), Self-Consistency (SC-CoT), and Tree-of-Thought (ToT)-to improve classification accuracy across multiple mental health datasets sourced from Reddit.<n>We analyze reasoning-driven prompting strategies, including Zero-shot CoT and Few-shot CoT, using key performance metrics such as Balanced Accuracy, F1 score, and Sensitivity/Specificity.<n>Our findings indicate that reasoning-enhanced techniques improve classification performance over direct prediction, particularly in complex cases.
arXiv Detail & Related papers (2025-03-13T06:42:37Z) - Evaluating Spoken Language as a Biomarker for Automated Screening of Cognitive Impairment [37.40606157690235]
Alterations in speech and language can be early predictors of Alzheimer's disease and related dementias.
We evaluated machine learning techniques for ADRD screening and severity prediction from spoken language.
Risk stratification and linguistic feature importance analysis enhanced the interpretability and clinical utility of predictions.
arXiv Detail & Related papers (2025-01-30T20:17:17Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.<n>We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.<n>Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Enhancing PTSD Outcome Prediction with Ensemble Models in Disaster Contexts [0.9249657468385778]
Post-traumatic stress disorder (PTSD) is a significant mental health challenge that affects individuals exposed to traumatic events.
Early detection and effective intervention for PTSD are crucial, as it can lead to long-term psychological distress if untreated.
arXiv Detail & Related papers (2024-11-16T01:44:43Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - Detecting the Clinical Features of Difficult-to-Treat Depression using
Synthetic Data from Large Language Models [0.20971479389679337]
We seek to develop a Large Language Model (LLM)-based tool capable of interrogating routinely-collected, narrative (free-text) electronic health record data.
We use LLM-generated synthetic data (GPT3.5) and a Non-Maximum Suppression (NMS) algorithm to train a BERT-based span extraction model.
We show it is possible to obtain good overall performance (0.70 F1 across polarity) on real clinical data on a set of as many as 20 different factors, and high performance (0.85 F1 with 0.95 precision) on a subset of important DTD
arXiv Detail & Related papers (2024-02-12T13:34:33Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Automated speech- and text-based classification of neuropsychiatric
conditions in a multidiagnostic setting [2.0972270756982536]
Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions.
We tested the performance of a range of machine learning models and advanced Transformer models on both binary and multiclass classification.
Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations.
arXiv Detail & Related papers (2023-01-13T08:24:21Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.