論文の概要: Semi-Supervised Learning on Graphs with Feature-Augmented Graph Basis
Functions
- arxiv url: http://arxiv.org/abs/2003.07646v1
- Date: Tue, 17 Mar 2020 11:21:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 22:06:26.393534
- Title: Semi-Supervised Learning on Graphs with Feature-Augmented Graph Basis
Functions
- Title(参考訳): 特徴型グラフ基底関数を用いた半教師あり学習
- Authors: Wolfgang Erb
- Abstract要約: 教師なし学習システムにおける初期カーネルを、既知の事前情報や教師なし学習出力から追加情報で拡張する方法について検討する。
正定値カーネルの生成元として、グラフの幾何学的情報を含むグラフ基底関数(GBF)に焦点を当てる。
機械学習において、正規化最小二乗(RLS)アプローチを用いて、グラフ上のデータの分類のために、導出した拡張カーネルをテストする。
- 参考スコア(独自算出の注目度): 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For semi-supervised learning on graphs, we study how initial kernels in a
supervised learning regime can be augmented with additional information from
known priors or from unsupervised learning outputs. These augmented kernels are
constructed in a simple update scheme based on the Schur-Hadamard product of
the kernel with additional feature kernels. As generators of the positive
definite kernels we will focus on graph basis functions (GBF) that allow to
include geometric information of the graph via the graph Fourier transform.
Using a regularized least squares (RLS) approach for machine learning, we will
test the derived augmented kernels for the classification of data on graphs.
- Abstract(参考訳): グラフ上の半教師付き学習において、教師付き学習システムにおける初期カーネルを、既知の事前情報や教師なし学習出力から追加情報で拡張する方法を検討する。
これらの拡張カーネルは、追加のフィーチャカーネルを持つカーネルのSchur-Hadamard製品に基づいた単純な更新スキームで構築される。
正定値核の生成者として、グラフフーリエ変換を介してグラフの幾何学的情報を含めることができるグラフ基底関数(gbf)に焦点を当てる。
機械学習において、正規化最小二乗(RLS)アプローチを用いて、グラフ上のデータの分類のための派生カーネルをテストする。
関連論文リスト
- Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman
graph kernels [0.0]
教師付き学習は近年、計算物理学の分野で大きな注目を集めている。
伝統的に、そのようなデータセットはメッシュとして与えられる入力で構成され、多くのノードが問題幾何学を表す。
つまり、教師付き学習モデルは、ノード属性の連続した大きなスパースグラフを処理できなければならない。
論文 参考訳(メタデータ) (2024-02-06T09:35:40Z) - General Graph Random Features [42.75616308187867]
重み付き隣接行列の任意の関数の偏りのない推定のためのランダムウォークに基づく新しいアルゴリズムを提案する。
提案アルゴリズムは, ノード数に関して, グラフカーネル評価の厳密な3次スケーリングを克服し, 準四次時間的複雑性を享受する。
論文 参考訳(メタデータ) (2023-10-07T15:47:31Z) - Transductive Kernels for Gaussian Processes on Graphs [7.542220697870243]
半教師付き学習のためのノード特徴データ付きグラフ用の新しいカーネルを提案する。
カーネルは、グラフと特徴データを2つの空間として扱うことにより、正規化フレームワークから派生する。
グラフ上のカーネルベースのモデルがどれだけの頻度で設計されているかを示す。
論文 参考訳(メタデータ) (2022-11-28T14:00:50Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervisionは最近、グラフ学習の新しいフロンティアに力を入れている。
GraphCLは、グラフデータ拡張のアドホックな手作業による選択によって反映されたプレハブ付きプリファブリックを使用する。
グラフ生成器のパラメータ空間における学習可能な連続前処理へと拡張した。
我々は、情報最小化(InfoMin)と情報ボトルネック(InfoBN)の2つの原則を利用して、学習した事前情報を規則化する。
論文 参考訳(メタデータ) (2022-01-04T15:49:18Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Convolutional Kernel Networks for Graph-Structured Data [37.13712126432493]
我々は,多層グラフカーネルのファミリーを導入し,グラフ畳み込みニューラルネットワークとカーネルメソッドの新たなリンクを確立する。
提案手法は,グラフをカーネル特徴写像の列として表現することにより,畳み込みカーネルネットワークをグラフ構造データに一般化する。
我々のモデルは、大規模データに対してエンドツーエンドでトレーニングすることもでき、新しいタイプのグラフ畳み込みニューラルネットワークをもたらす。
論文 参考訳(メタデータ) (2020-03-11T09:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。