論文の概要: Virtual staining for mitosis detection in Breast Histopathology
- arxiv url: http://arxiv.org/abs/2003.07801v1
- Date: Tue, 17 Mar 2020 16:33:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 21:48:01.223075
- Title: Virtual staining for mitosis detection in Breast Histopathology
- Title(参考訳): 乳腺病理組織におけるミトーシス検出のための仮想染色
- Authors: Caner Mercan, Germonda Reijnen-Mooij, David Tellez Martin, Johannes
Lotz, Nick Weiss, Marcel van Gerven, Francesco Ciompi
- Abstract要約: 本稿では,乳がん組織の病理組織像をマッピングするために,ジェネレーティブ・アドバイサル・ネットワークに基づく仮想染色手法を提案する。
得られた合成画像を用いて、畳み込みニューラルネットワーク(CNN)を構築し、有糸分裂図形の自動検出を行う。
- 参考スコア(独自算出の注目度): 5.004307299517538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a virtual staining methodology based on Generative Adversarial
Networks to map histopathology images of breast cancer tissue from H&E stain to
PHH3 and vice versa. We use the resulting synthetic images to build
Convolutional Neural Networks (CNN) for automatic detection of mitotic figures,
a strong prognostic biomarker used in routine breast cancer diagnosis and
grading. We propose several scenarios, in which CNN trained with synthetically
generated histopathology images perform on par with or even better than the
same baseline model trained with real images. We discuss the potential of this
application to scale the number of training samples without the need for manual
annotations.
- Abstract(参考訳): 乳がん組織の組織病理像をh&e染色からphh3にマッピングし,その逆も行うように,生成的逆ネットワークに基づく仮想染色法を提案する。
得られた合成画像を用いてコンボリューショナルニューラルネットワーク (CNN) を構築し, 乳がんの診断およびグレーディングに使用される強力な予後指標である有糸分裂像の自動検出を行った。
そこで本研究では,cnnが合成組織病理画像で訓練したモデルが,実際の画像で訓練されたモデルと同等かそれ以上の性能を発揮するシナリオを提案する。
手動のアノテーションを必要とせずに、トレーニングサンプル数を拡大するアプリケーションの可能性について論じる。
関連論文リスト
- Semantic Map Guided Synthesis of Wireless Capsule Endoscopy Images using
Diffusion Models [4.187344935012482]
ワイヤレスカプセル内視鏡(Wireless capsule endoscopy, WCE)は、消化管(GI)を可視化するための非侵襲的方法である。
本稿では,様々なWCE画像を生成するために生成モデル,特に拡散モデル(DM)を活用する新しいアプローチを提案する。
我々のモデルは、可視化スケール(VS)エンジンによるセマンティックマップを導入し、生成した画像の可制御性と多様性を向上させる。
論文 参考訳(メタデータ) (2023-11-10T06:16:44Z) - Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
本稿では,拡散確率モデル(DDPM)を用いて網膜光コヒーレンス断層撮影(OCT)画像を自動的に生成する画像合成手法を提案する。
階層分割の精度を一貫して改善し,様々なニューラルネットワークを用いて検証する。
これらの結果から,網膜CT画像の手動アノテーションの必要性が軽減される可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-09T16:09:24Z) - Label- and slide-free tissue histology using 3D epi-mode quantitative
phase imaging and virtual H&E staining [1.3141683929245986]
組織生検の組織学的染色は、疾患の診断と組織の総合的な臨床評価の基準となる。
我々は,新しい3次元定量的位相イメージング技術である定量的斜め後方照明顕微鏡 (qOBM) と,教師なし生成対向ネットワークパイプラインを組み合わせた。
マウス肝,ラットグリオー肉腫,ヒトグリオーマから得られた新鮮組織標本を用いて,H&Eの高忠実度化を実現した。
論文 参考訳(メタデータ) (2023-06-01T11:09:31Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
XM-GANと名づけられた少数ショット生成法は,1塩基と1対の参照組織像を入力とし,高品質で多様な画像を生成する。
我々の知る限りでは、大腸組織像の少数ショット生成を最初に調査した人物である。
論文 参考訳(メタデータ) (2023-04-04T17:50:30Z) - Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs [8.596819713822477]
提案するパイプラインは,大量のリアルなOCTA画像を,本質的に一致する基底真理ラベルで合成する。
提案手法は,1) 様々な網膜叢をモデル化した生理的シミュレーション,2) 物理に基づく画像拡張のスイートの2つの新しい構成要素を基礎にしている。
論文 参考訳(メタデータ) (2022-07-22T14:22:22Z) - Multi-modal Retinal Image Registration Using a Keypoint-Based Vessel
Structure Aligning Network [9.988115865060589]
マルチモーダル網膜画像登録のためのエンドツーエンドのトレーニング可能なディープラーニング手法を提案する。
本手法は,キーポイントの検出と記述のために,容器構造から畳み込み特性を抽出する。
キーポイント検出・記述ネットワークとグラフニューラルネットワークは、自己教師された方法で共同で訓練される。
論文 参考訳(メタデータ) (2022-07-21T14:36:51Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
生検コアのハイパースペクトル画像に白血球画素を分割する機械学習パイプラインを提案する。
これらの細胞は臨床的に診断に重要であるが、いくつかの先行研究は正確なピクセルラベルを得るのが困難であるため、それらを組み込むのに苦労している。
論文 参考訳(メタデータ) (2022-03-23T00:58:27Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。