論文の概要: Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs
- arxiv url: http://arxiv.org/abs/2207.11102v1
- Date: Fri, 22 Jul 2022 14:22:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 13:37:57.638490
- Title: Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs
- Title(参考訳): 網膜血管の生理的シミュレーションによるoctアンギオグラフのアノテーションフリーセグメンテーション
- Authors: Martin J. Menten, Johannes C. Paetzold, Alina Dima, Bjoern H. Menze,
Benjamin Knier, Daniel Rueckert
- Abstract要約: 提案するパイプラインは,大量のリアルなOCTA画像を,本質的に一致する基底真理ラベルで合成する。
提案手法は,1) 様々な網膜叢をモデル化した生理的シミュレーション,2) 物理に基づく画像拡張のスイートの2つの新しい構成要素を基礎にしている。
- 参考スコア(独自算出の注目度): 8.596819713822477
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optical coherence tomography angiography (OCTA) can non-invasively image the
eye's circulatory system. In order to reliably characterize the retinal
vasculature, there is a need to automatically extract quantitative metrics from
these images. The calculation of such biomarkers requires a precise semantic
segmentation of the blood vessels. However, deep-learning-based methods for
segmentation mostly rely on supervised training with voxel-level annotations,
which are costly to obtain. In this work, we present a pipeline to synthesize
large amounts of realistic OCTA images with intrinsically matching ground truth
labels; thereby obviating the need for manual annotation of training data. Our
proposed method is based on two novel components: 1) a physiology-based
simulation that models the various retinal vascular plexuses and 2) a suite of
physics-based image augmentations that emulate the OCTA image acquisition
process including typical artifacts. In extensive benchmarking experiments, we
demonstrate the utility of our synthetic data by successfully training retinal
vessel segmentation algorithms. Encouraged by our method's competitive
quantitative and superior qualitative performance, we believe that it
constitutes a versatile tool to advance the quantitative analysis of OCTA
images.
- Abstract(参考訳): 光コヒーレンス断層撮影血管造影(OCTA)は、眼の循環系を非侵襲的に画像化することができる。
網膜血管を確実に特徴付けるためには、これらの画像から定量的指標を自動的に抽出する必要がある。
このようなバイオマーカーの計算には、血管の正確なセグメンテーションが必要である。
しかし, セグメンテーションの深層学習に基づく手法は, ボクセルレベルのアノテーションを用いた教師付きトレーニングに大きく依存している。
本研究では,大量のリアルなOCTA画像と内在的に一致する基底真理ラベルを合成するパイプラインを提案し,トレーニングデータの手動アノテーションの必要性を回避した。
提案手法は2つの新しい構成要素に基づいている。
1)種々の網膜血管叢をモデル化する生理的シミュレーション
2) 典型的なアーティファクトを含むOCTA画像取得プロセスをエミュレートする物理ベースの画像拡張スイート。
広範囲なベンチマーク実験において, 網膜血管分割アルゴリズムの訓練に成功し, 合成データの有用性を実証した。
本稿では,OCTA画像の定量化を推し進めるための多目的ツールであると考えられる。
関連論文リスト
- Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
本研究は, 連続断面光コヒーレンストモグラフィー画像における神経血管セグメンテーションのための合成エンジンについて述べる。
提案手法は,ラベル合成とラベル・ツー・イメージ変換の2段階からなる。
前者の有効性を,より現実的なトレーニングラベルの集合と比較し,後者を合成ノイズと人工物モデルのアブレーション研究により実証した。
論文 参考訳(メタデータ) (2024-07-01T16:09:07Z) - A label-free and data-free training strategy for vasculature segmentation in serial sectioning OCT data [4.746694624239095]
オプティカル・コヒーレンス・トモグラフィー (OCT) は, 死後神経血管の研究でますます人気が高まっている。
ここでは、深層学習セグメンテーションモデルをトレーニングするために、容器の合成データセットを活用する。
どちらのアプローチも同様のDiceスコアを得るが、偽陽性と偽陰率は非常に異なる。
論文 参考訳(メタデータ) (2024-05-22T15:39:31Z) - Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
本稿では,拡散確率モデル(DDPM)を用いて網膜光コヒーレンス断層撮影(OCT)画像を自動的に生成する画像合成手法を提案する。
階層分割の精度を一貫して改善し,様々なニューラルネットワークを用いて検証する。
これらの結果から,網膜CT画像の手動アノテーションの必要性が軽減される可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-09T16:09:24Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - SYNTA: A novel approach for deep learning-based image analysis in muscle
histopathology using photo-realistic synthetic data [2.1616289178832666]
我々は,合成,フォトリアリスティック,高度に複雑なバイオメディカルイメージをトレーニングデータとして生成するための新しいアプローチとして,Synta(synthetic data)を紹介した。
手動のアノテーションを必要とせずに、以前に見つからなかった実世界のデータに対して、堅牢で専門家レベルのセグメンテーションタスクを実行することが可能であることを実証した。
論文 参考訳(メタデータ) (2022-07-29T12:50:32Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。