On the limits of photon-mediated interactions in one-dimensional
photonic baths
- URL: http://arxiv.org/abs/2003.07854v1
- Date: Mon, 16 Mar 2020 09:35:05 GMT
- Title: On the limits of photon-mediated interactions in one-dimensional
photonic baths
- Authors: E. S\'anchez-Burillo, D. Porras, A. Gonz\'alez-Tudela
- Abstract summary: We show how photon-mediated interactions can always be written as a finite sum of exponentials, and thus can not display a power-law scaling.
As an outlook, we show how by relaxing some of these conditions, power-law interactions can be obtained within certain windows, or even in the regime for the latter case.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exchange of off-resonant propagating photons between distant quantum
emitters induces coherent interactions among them. The range of such
interactions, and whether they are accompanied by dissipation, depends on the
photonic energy dispersion, its dimensionality, and/or the light-matter
couplings. In this manuscript, we characterize the limits of photon-mediated
interactions for the case of generic one-dimensional photonic baths under the
typical assumptions, that are, having finite range hoppings for the photonic
bath plus local and rotating-wave light-matter couplings. In that case, we show
how, irrespective of the system's parameter, the coherent photon-mediated
interactions can always be written as a finite sum of exponentials, and thus
can not display a power-law asymptotic scaling. As an outlook, we show how by
relaxing some of these conditions, e.g., going beyond local light-matter
couplings (e.g., giant atoms) or with longer-range photon hopping models,
power-law interactions can be obtained within certain distance windows, or even
in the asymptotic regime for the latter case.
Related papers
- Harnessing spontaneous emission of correlated photon pairs from ladder-type giant atoms [5.498509152557573]
We show that a ladder-type three-level giant atom spontaneously emits strongly correlated photon pairs with high efficiency.
By encoding local phases into the optimal coupling sequence, directional two-photon correlated transfer can be achieved.
Such correlated photon pairs have great potential applications for quantum information processing.
arXiv Detail & Related papers (2024-06-18T09:03:00Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Quantum correlated photons via a passive nonlinear microcavity [1.0753191494611891]
We create non-classical photon correlations, including photon anti-bunching, via a passive InGaP photonic integrated circuit.
Our work opens a new route in controlling quantum light by harnessing highly-engineerable bulk optical nonlinearities.
arXiv Detail & Related papers (2023-04-23T15:02:36Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Exotic interactions mediated by a non-Hermitian photonic bath [0.0]
We study the exotic interaction between emitters mediated by the photonic modes of a lossy photonic lattice.
We show in a paradigmatic case study that structured losses in the field can seed exotic emission properties.
These findings introduce a new paradigm of light-mediated interactions with unprecedented features.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Photon-mediated Peierls Transition of a 1D Gas in a Multimode Optical
Cavity [0.0]
Peierls instability toward a charge density wave is a canonical example of phonon-driven strongly correlated physics.
We propose a method to realize an analogous photon-mediated Peierls transition, using a system of interacting Bose or Fermi atoms trapped inside a multimode confocal cavity.
arXiv Detail & Related papers (2020-02-27T17:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.