Topologically Ordered Steady States in Open Quantum Systems
- URL: http://arxiv.org/abs/2306.12482v1
- Date: Wed, 21 Jun 2023 18:00:09 GMT
- Title: Topologically Ordered Steady States in Open Quantum Systems
- Authors: Zijian Wang, Xu-Dong Dai, He-Ran Wang and Zhong Wang
- Abstract summary: We study non-equilibrium phases of matter with robust topological degeneracy of steady states.
We find that while the degeneracy is fragile under noise in two dimensions, it is stable in three dimensions.
- Score: 2.7811337602231214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interplay between dissipation and correlation can lead to new emergent
phenomena. Here we study non-equilibrium phases of matter with robust
topological degeneracy of steady states, which is a generalization of the
ground-state topological degeneracy of closed systems. Specifically, we
construct two representative Lindbladians using engineered dissipation, and
exactly solve the steady states with topological degeneracy. We find that while
the degeneracy is fragile under noise in two dimensions, it is stable in three
dimensions, where a genuine many-body phase with topological degeneracy is
realized. We identify universal features of dissipative topological physics
such as the deconfined emergent gauge field and slow relaxation dynamics of
topological defects. The transition from a topologically ordered phase to a
trivial phase is also investigated via numerical simulation. Our work
highlights the essential difference between ground-state topological order in
closed systems and steady-state topological order in open systems.
Related papers
- Dynamical topology of chiral and nonreciprocal state transfers in a non-Hermitian quantum system [11.467872077398688]
We study topological chiral and nonreciprocal dynamics by encircling the exceptional points (EPs) of non-Hermitian Hamiltonians in a trapped ion system.
These dynamics are topologically robust against external perturbations even in the presence dissipation-induced nonadiabatic processes.
Our results mark a significant step towards exploring topological properties of open quantum systems.
arXiv Detail & Related papers (2024-06-05T07:51:58Z) - Steady-state topological order [4.990879531940761]
We investigate a generalization of topological order from closed systems to open systems, for which the steady states take the place of ground states.
We construct typical lattice models with steady-state topological order, and characterize them by complementary approaches based on topological degeneracy of steady states, topological entropy, and dissipative gauge theory.
arXiv Detail & Related papers (2023-10-26T17:35:16Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - Observation of a symmetry-protected topological phase in external
magnetic fields [1.4515101661933258]
We report the real-space observation of a symmetry-protected topological phase with interacting nuclear spins.
We probe the interaction-induced transition between two topologically distinct phases, both of which are classified by many-body Chern numbers.
Our findings enable direct characterization of topological features of quantum many-body states through gradually decreasing the strength of the introduced external fields.
arXiv Detail & Related papers (2022-08-10T14:08:01Z) - Driven-dissipative topological phases in parametric resonator arrays [62.997667081978825]
We find two phases of topological amplification, both with directional transport and exponential gain with the number of sites, and one of them featuring squeezing.
We characterize the resilience to disorder of the different phases and their stability, gain, and noise-to-signal ratio.
We discuss their experimental implementation with state-of-the-art techniques.
arXiv Detail & Related papers (2022-07-27T18:00:05Z) - Dynamical detection of mean-field topological phases in an interacting
Chern insulator [11.848843951626527]
We propose a scheme based on quench dynamics to detect the mean-field topological phase diagram of an insulator.
We find two characteristic times $t_s$ and $t_c$ which capture the emergence of dynamical self-consistent particle number density.
The number of mean-field topological phase is determined by the spin polarizations of four Dirac points at the time $t_s$.
arXiv Detail & Related papers (2022-06-22T12:37:15Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Ising chain with topological degeneracy induced by dissipation [0.0]
We study a non-Hermitian Ising chain with two transverse fields, one real and another imaginary, based on the exact solution and numerical simulation.
We show that topological degeneracy still exists and can be obtained by an imaginary transverse field from a topologically trivial phase of a Hermitian system.
arXiv Detail & Related papers (2020-03-18T03:35:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.