論文の概要: A Driver Fatigue Recognition Algorithm Based on Spatio-Temporal Feature
Sequence
- arxiv url: http://arxiv.org/abs/2003.08134v1
- Date: Wed, 18 Mar 2020 10:25:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 10:00:17.595936
- Title: A Driver Fatigue Recognition Algorithm Based on Spatio-Temporal Feature
Sequence
- Title(参考訳): 時空間特徴系列に基づくドライバ疲労認識アルゴリズム
- Authors: Chen Zhang, Xiaobo Lu, Zhiliang Huang
- Abstract要約: 本稿では,特徴系列に基づくリアルタイム疲労状態認識アルゴリズムを提案する。
実験により, このアルゴリズムは, 小体積, 高速, 高精度の利点があることがわかった。
- 参考スコア(独自算出の注目度): 22.71097598048225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researches show that fatigue driving is one of the important causes of road
traffic accidents, so it is of great significance to study the driver fatigue
recognition algorithm to improve road traffic safety. In recent years, with the
development of deep learning, the field of pattern recognition has made great
development. This paper designs a real-time fatigue state recognition algorithm
based on spatio-temporal feature sequence, which can be mainly applied to the
scene of fatigue driving recognition. The algorithm is divided into three task
networks: face detection network, facial landmark detection and head pose
estimation network, fatigue recognition network. Experiments show that the
algorithm has the advantages of small volume, high speed and high accuracy.
- Abstract(参考訳): 道路交通事故における疲労運転は交通事故の重要な原因の一つであり,運転者の疲労認識アルゴリズムを用いて道路交通安全を改善することが重要である。
近年、ディープラーニングの発展に伴い、パターン認識の分野は大きな発展を遂げている。
本稿では, 時空間特徴系列に基づくリアルタイム疲労状態認識アルゴリズムを設計し, 主に疲労運転認識の現場に適用できることを示す。
このアルゴリズムは,顔検出ネットワーク,顔のランドマーク検出,頭部ポーズ推定ネットワーク,疲労認識ネットワークの3つのタスクネットワークに分けられる。
実験により,このアルゴリズムは小体積,高速,高精度の利点を有することが示された。
関連論文リスト
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
車線検出は自律運転認識システムにおいて重要な役割を果たす。
ディープラーニングアルゴリズムが普及するにつれて、ディープラーニングに基づく単眼車線検出手法が優れた性能を示した。
本稿では, 成熟度の高い2次元車線検出手法と開発途上国の3次元車線検出技術の両方を網羅して, 既存手法の概要を概説する。
論文 参考訳(メタデータ) (2024-11-25T12:09:43Z) - VigilEye -- Artificial Intelligence-based Real-time Driver Drowsiness Detection [0.5549794481031468]
本研究では,深層学習技術とOpenCVフレームワークを組み合わせた新しいドライバの眠気検知システムを提案する。
このシステムは、運転者の顔から抽出された顔のランドマークを、眠気パターンを認識するために訓練された畳み込みニューラルネットワークに入力する。
提案システムは,運転者の疲労による事故を防止するため,タイムリーな警報を提供することで,道路安全を高めることができる。
論文 参考訳(メタデータ) (2024-06-21T20:53:49Z) - Improving automatic detection of driver fatigue and distraction using
machine learning [0.0]
運転者の疲労と注意をそらした運転は交通事故の重要な要因である。
本稿では,視覚に基づくアプローチと機械学習に基づくアプローチを用いて,疲労と注意をそらした運転行動の同時検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T06:33:46Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Vision Transformers and YoloV5 based Driver Drowsiness Detection
Framework [0.0]
本稿では,視覚変換器とヨーロV5アーキテクチャをベースとした,ドライバの眠気認識のための新しいフレームワークを提案する。
関心領域抽出を目的とした顔抽出のためのヨロV5事前学習アーキテクチャを提案する。
さらなる評価のために、提案されたフレームワークは、様々な光環境における39人の参加者のカスタムデータセットでテストされ、95.5%の精度を達成した。
論文 参考訳(メタデータ) (2022-09-03T11:37:41Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Research on facial expression recognition based on Multimodal data
fusion and neural network [2.5431493111705943]
このアルゴリズムはマルチモーダルデータに基づいており、顔画像、画像の方向勾配のヒストグラム、顔のランドマークを入力とする。
実験結果から, マルチモーダルデータの相補性により, 精度, 堅牢性, 検出速度が大幅に向上したことがわかった。
論文 参考訳(メタデータ) (2021-09-26T23:45:40Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
提案アルゴリズムは,駐車前に結果を予測するための想像モデル,高速探索ランダムツリー(RRT)の改良,経路平滑化モジュールの3つの部分から構成される。
われわれのアルゴリズムは、実際のキネマティックな車両モデルに基づいており、実際の自動運転車にアルゴリズムを適用するのにより適している。
アルゴリズムの有効性を評価するため,3つの異なる駐車シナリオにおいて,従来のRTとアルゴリズムを比較した。
論文 参考訳(メタデータ) (2021-08-25T18:24:34Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
本稿では,強化学習技術を用いたネットワーク拡張とpruning検索を組み込んだコンパイラ対応統一フレームワークを提案する。
具体的には,リカレントニューラルネットワーク(RNN)を用いて,ネットワークの強化とプルーニングの両面での統一的なスキームを自動で提供する。
提案手法は,モバイルデバイス上でのリアルタイム3次元物体検出を実現する。
論文 参考訳(メタデータ) (2020-12-26T19:41:15Z) - Robust Two-Stream Multi-Feature Network for Driver Drowsiness Detection [16.474150429342153]
NTHU-DDD(Nation Tsing Hua University Driver Drowsiness Detection)による眠気検知システムの訓練と評価
94.46%の精度が得られ、既存の疲労検出モデルよりも優れています。
論文 参考訳(メタデータ) (2020-10-13T08:49:35Z) - Exploiting Semantics for Face Image Deblurring [121.44928934662063]
本稿では,深層畳み込みニューラルネットワークによる意味的手がかりを利用して,効果的かつ効率的な顔分解アルゴリズムを提案する。
顔のセマンティックラベルを入力先として組み込んで,顔の局所構造を正規化するための適応的構造損失を提案する。
提案手法は、より正確な顔の特徴と細部を持つシャープ画像を復元する。
論文 参考訳(メタデータ) (2020-01-19T13:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。