論文の概要: Improving automatic detection of driver fatigue and distraction using
machine learning
- arxiv url: http://arxiv.org/abs/2401.10213v1
- Date: Thu, 4 Jan 2024 06:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 09:18:02.979318
- Title: Improving automatic detection of driver fatigue and distraction using
machine learning
- Title(参考訳): 機械学習による運転者の疲労・気遣いの自動検出の改善
- Authors: Dongjiang Wu
- Abstract要約: 運転者の疲労と注意をそらした運転は交通事故の重要な要因である。
本稿では,視覚に基づくアプローチと機械学習に基づくアプローチを用いて,疲労と注意をそらした運転行動の同時検出手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Changes and advances in information technology have played an important role
in the development of intelligent vehicle systems in recent years. Driver
fatigue and distracted driving are important factors in traffic accidents.
Thus, onboard monitoring of driving behavior has become a crucial component of
advanced driver assistance systems for intelligent vehicles. In this article,
we present techniques for simultaneously detecting fatigue and distracted
driving behaviors using vision-based and machine learning-based approaches. In
driving fatigue detection, we use facial alignment networks to identify facial
feature points in the images, and calculate the distance of the facial feature
points to detect the opening and closing of the eyes and mouth. Furthermore, we
use a convolutional neural network (CNN) based on the MobileNet architecture to
identify various distracted driving behaviors. Experiments are performed on a
PC based setup with a webcam and results are demonstrated using public datasets
as well as custom datasets created for training and testing. Compared to
previous approaches, we build our own datasets and provide better results in
terms of accuracy and computation time.
- Abstract(参考訳): 近年の情報技術の変化と進歩は、インテリジェントな車両システムの開発において重要な役割を担っている。
ドライバーの疲労と運転の邪魔は交通事故の重要な要因である。
このように、運転行動のオンボード監視は、インテリジェントな車両の高度な運転支援システムの重要な要素となっている。
本稿では,視覚ベースと機械学習に基づくアプローチを用いて,疲労と不注意の運転行動を同時に検出する手法を提案する。
運転疲労検出において,画像中の顔特徴点を識別するために顔アライメントネットワークを使用し,顔特徴点の距離を算出し,目と口の開閉を検出する。
さらに,mobilenetアーキテクチャに基づく畳み込みニューラルネットワーク(cnn)を用いて,各種の注意をそらした運転行動の識別を行う。
実験は、WebカメラでPCベースのセットアップで行われ、その結果は、公開データセットと、トレーニングとテスト用に作成されたカスタムデータセットを使用して実証される。
従来のアプローチと比較して、我々は独自のデータセットを構築し、精度と計算時間の観点からより良い結果を提供する。
関連論文リスト
- VigilEye -- Artificial Intelligence-based Real-time Driver Drowsiness Detection [0.5549794481031468]
本研究では,深層学習技術とOpenCVフレームワークを組み合わせた新しいドライバの眠気検知システムを提案する。
このシステムは、運転者の顔から抽出された顔のランドマークを、眠気パターンを認識するために訓練された畳み込みニューラルネットワークに入力する。
提案システムは,運転者の疲労による事故を防止するため,タイムリーな警報を提供することで,道路安全を高めることができる。
論文 参考訳(メタデータ) (2024-06-21T20:53:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Provident Vehicle Detection at Night for Advanced Driver Assistance
Systems [3.7468898363447654]
本報告では, 夜間に来るべき車両を, 発生した光成果物に基づいて検出するシステムについて述べる。
本研究では,提案システムが提供する時間的メリットを,実稼働型コンピュータビジョンシステムと比較して定量化する。
論文 参考訳(メタデータ) (2021-07-23T15:27:17Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - The Multimodal Driver Monitoring Database: A Naturalistic Corpus to
Study Driver Attention [44.94118128276982]
スマートな車両は、人間の運転者の行動や行動を監視して、必要な時に警告や介入を行う必要がある。
深層学習とコンピュータビジョンの最近の進歩は、人間の行動や活動を監視する上で大きな約束を示しています。
運転関連タスクの予測に高性能を提供するモデルのトレーニングには、ドメイン内の膨大なデータが必要である。
論文 参考訳(メタデータ) (2020-12-23T16:37:17Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Artificial Intelligence Enabled Traffic Monitoring System [3.085453921856008]
本稿では,深層畳み込みニューラルネットワークを用いたリアルタイム交通映像の自動監視手法を提案する。
提案システムは、さまざまなトラフィック監視ニーズを自動化するために、最先端のディープラーニングアルゴリズムをデプロイする。
論文 参考訳(メタデータ) (2020-10-02T22:28:02Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
本稿では,より正確かつ人間らしく運転できるエンド・ツー・エンド駆動モデルについて検討する。
HERE Technologiesのセマンティックマップとビジュアルマップを活用し、既存のDrive360データセットを拡張します。
私たちのモデルは、実世界の運転データ60時間3000kmのDrive360+HEREデータセットでトレーニングされ、評価されています。
論文 参考訳(メタデータ) (2020-07-10T22:25:27Z) - Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles [7.7003495898919265]
本研究では, 周辺物体の検出精度を高めるために, 深層強化学習を用いた協調認識方式を提案する。
本手法は、車両通信網におけるネットワーク負荷を軽減し、通信信頼性を高める。
論文 参考訳(メタデータ) (2020-04-23T01:44:12Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。