Towards Explanation for Unsupervised Graph-Level Representation Learning
- URL: http://arxiv.org/abs/2205.09934v1
- Date: Fri, 20 May 2022 02:50:15 GMT
- Title: Towards Explanation for Unsupervised Graph-Level Representation Learning
- Authors: Qinghua Zheng, Jihong Wang, Minnan Luo, Yaoliang Yu, Jundong Li, Lina
Yao, Xiaojun Chang
- Abstract summary: Existing explanation methods focus on the supervised settings, eg, node classification and graph classification, while the explanation for unsupervised graph-level representation learning is still unexplored.
In this paper, we advance the Information Bottleneck principle (IB) to tackle the proposed explanation problem for unsupervised graph representations, which leads to a novel principle, textitUnsupervised Subgraph Information Bottleneck (USIB)
We also theoretically analyze the connection between graph representations and explanatory subgraphs on the label space, which reveals that the robustness of representations benefit the fidelity of explanatory subgraphs.
- Score: 108.31036962735911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the superior performance of Graph Neural Networks (GNNs) in various
domains, there is an increasing interest in the GNN explanation problem
"\emph{which fraction of the input graph is the most crucial to decide the
model's decision?}" Existing explanation methods focus on the supervised
settings, \eg, node classification and graph classification, while the
explanation for unsupervised graph-level representation learning is still
unexplored. The opaqueness of the graph representations may lead to unexpected
risks when deployed for high-stake decision-making scenarios. In this paper, we
advance the Information Bottleneck principle (IB) to tackle the proposed
explanation problem for unsupervised graph representations, which leads to a
novel principle, \textit{Unsupervised Subgraph Information Bottleneck} (USIB).
We also theoretically analyze the connection between graph representations and
explanatory subgraphs on the label space, which reveals that the expressiveness
and robustness of representations benefit the fidelity of explanatory
subgraphs. Experimental results on both synthetic and real-world datasets
demonstrate the superiority of our developed explainer and the validity of our
theoretical analysis.
Related papers
- Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - Learning Robust Representation through Graph Adversarial Contrastive
Learning [6.332560610460623]
Existing studies show that node representations generated by graph neural networks (GNNs) are vulnerable to adversarial attacks.
We propose a novel Graph Adversarial Contrastive Learning framework (GraphACL) by introducing adversarial augmentations into graph self-supervised learning.
arXiv Detail & Related papers (2022-01-31T07:07:51Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - Recognizing Predictive Substructures with Subgraph Information
Bottleneck [97.19131149357234]
We propose a novel subgraph information bottleneck (SIB) framework to recognize such subgraphs, named IB-subgraph.
Intractability of mutual information and the discrete nature of graph data makes the objective of SIB notoriously hard to optimize.
Experiments on graph learning and large-scale point cloud tasks demonstrate the superior property of IB-subgraph.
arXiv Detail & Related papers (2021-03-20T11:19:43Z) - SUGAR: Subgraph Neural Network with Reinforcement Pooling and
Self-Supervised Mutual Information Mechanism [33.135006052347194]
This paper presents a novel hierarchical subgraph-level selection and embedding based graph neural network for graph classification, namely SUGAR.
SUGAR reconstructs a sketched graph by extracting striking subgraphs as the representative part of the original graph to reveal subgraph-level patterns.
To differentiate subgraph representations among graphs, we present a self-supervised mutual information mechanism to encourage subgraph embedding.
arXiv Detail & Related papers (2021-01-20T15:06:16Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
We present an unsupervised graph representation learning method, Unsupervised Hierarchical Graph Representation (UHGR)
Our method focuses on maximizing mutual information between "local" and high-level "global" representations.
The results show that the proposed method achieves comparable results to state-of-the-art supervised methods on several benchmarks.
arXiv Detail & Related papers (2020-03-18T18:21:48Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.