Survey of Personalization Techniques for Federated Learning
- URL: http://arxiv.org/abs/2003.08673v1
- Date: Thu, 19 Mar 2020 10:47:55 GMT
- Title: Survey of Personalization Techniques for Federated Learning
- Authors: Viraj Kulkarni, Milind Kulkarni, Aniruddha Pant
- Abstract summary: Federated learning enables machine learning models to learn from private decentralized data without compromising privacy.
This paper highlights the need for personalization and surveys recent research on this topic.
- Score: 0.08594140167290096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning enables machine learning models to learn from private
decentralized data without compromising privacy. The standard formulation of
federated learning produces one shared model for all clients. Statistical
heterogeneity due to non-IID distribution of data across devices often leads to
scenarios where, for some clients, the local models trained solely on their
private data perform better than the global shared model thus taking away their
incentive to participate in the process. Several techniques have been proposed
to personalize global models to work better for individual clients. This paper
highlights the need for personalization and surveys recent research on this
topic.
Related papers
- Personalized Federated Learning via Stacking [0.0]
We present a novel personalization approach based on stacked generalization where clients directly send each other privacy-preserving models to be used as base models to train a meta-model on private data.
Our approach is flexible, accommodating various privacy-preserving techniques and model types, and can be applied in horizontal, hybrid, and vertically partitioned federations.
arXiv Detail & Related papers (2024-04-16T23:47:23Z) - Dirichlet-based Uncertainty Quantification for Personalized Federated
Learning with Improved Posterior Networks [9.54563359677778]
This paper presents a new approach to federated learning that allows selecting a model from global and personalized ones.
It is achieved through a careful modeling of predictive uncertainties that helps to detect local and global in- and out-of-distribution data.
The comprehensive experimental evaluation on the popular real-world image datasets shows the superior performance of the model in the presence of out-of-distribution data.
arXiv Detail & Related papers (2023-12-18T14:30:05Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - PerFED-GAN: Personalized Federated Learning via Generative Adversarial
Networks [46.17495529441229]
Federated learning is a distributed machine learning method that can be used to deploy AI-dependent IoT applications.
This paper proposes a federated learning method based on co-training and generative adversarial networks(GANs)
In our experiments, the proposed method outperforms the existing methods in mean test accuracy by 42% when the client's model architecture and data distribution vary significantly.
arXiv Detail & Related papers (2022-02-18T12:08:46Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
Federated learning allows clients to collaboratively learn statistical models while keeping their data local.
Recent personalized federated learning methods train a separate model for each client while still leveraging the knowledge available at other clients.
We show on a suite of federated datasets that this approach achieves significantly higher accuracy and fairness than state-of-the-art methods.
arXiv Detail & Related papers (2021-11-17T19:40:07Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z) - Specialized federated learning using a mixture of experts [0.6974741712647655]
In federated learning, clients share a global model that has been trained on decentralized local client data.
We propose an alternative method to learn a personalized model for each client in a federated setting.
Our results show that the mixture of experts model is better suited as a personalized model for devices in these settings.
arXiv Detail & Related papers (2020-10-05T14:43:57Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.