論文の概要: Faster SVM Training via Conjugate SMO
- arxiv url: http://arxiv.org/abs/2003.08719v1
- Date: Thu, 19 Mar 2020 12:50:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 05:00:40.123965
- Title: Faster SVM Training via Conjugate SMO
- Title(参考訳): Conjugate SMOによる高速SVMトレーニング
- Authors: Alberto Torres-Barr\'an and Carlos Ala\'iz and Jos\'e R. Dorronsoro
- Abstract要約: 本稿では,SMOアルゴリズムの改良版を提案する。
この新しいアプローチは、各イテレーションの計算コストをわずかに増加させるだけである。
我々は、この新しい共役SMOの反復の収束と、カーネル行列が正定値であるときの線形速度を証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an improved version of the SMO algorithm for training
classification and regression SVMs, based on a Conjugate Descent procedure.
This new approach only involves a modest increase on the computational cost of
each iteration but, in turn, usually results in a substantial decrease in the
number of iterations required to converge to a given precision. Besides, we
prove convergence of the iterates of this new Conjugate SMO as well as a linear
rate when the kernel matrix is positive definite. We have implemented Conjugate
SMO within the LIBSVM library and show experimentally that it is faster for
many hyper-parameter configurations, being often a better option than second
order SMO when performing a grid-search for SVM tuning.
- Abstract(参考訳): 共役Descent 法に基づく分類と回帰SVMの学習のためのSMOアルゴリズムの改良版を提案する。
この新しいアプローチは、各イテレーションの計算コストをわずかに増加させるだけであるが、通常、与えられた精度に収束するために必要なイテレーションの数が大幅に減少する。
さらに、この新しい共役SMOの繰り返しの収束と、カーネル行列が正定値であるときの線形速度を証明した。
We have implemented Conjugate SMO in the LIBSVM library and showed experimentally that it is faster for many hyper-parameter configurations, are often be better option than second order SMO when performed a grid-search for SVM tuning。
関連論文リスト
- Quick Adaptive Ternary Segmentation: An Efficient Decoding Procedure For
Hidden Markov Models [70.26374282390401]
ノイズの多い観測から元の信号(すなわち隠れ鎖)を復号することは、ほぼすべてのHMMに基づくデータ分析の主要な目標の1つである。
本稿では,多対数計算複雑性において隠れた列を復号化するための分法であるQuick Adaptive Ternary(QATS)を提案する。
論文 参考訳(メタデータ) (2023-05-29T19:37:48Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
シャープネス認識(SAM)は、ディープニューラルネットワークのトレーニングにおいて、より一般的なものにするため、広範囲に研究されている。
AdaSAMと呼ばれる適応的な学習摂動と運動量加速度をSAMに統合することはすでに検討されている。
いくつかのNLPタスクにおいて,SGD,AMS,SAMsGradと比較して,AdaSAMが優れた性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T15:12:42Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
シャッフルに基づく変種(ミニバッチと局所ランダムリシャッフル)について検討する。
ポリアック・ロジャシエヴィチ条件を満たす滑らかな函数に対して、これらのシャッフル型不変量(英語版)(shuffling-based variants)がそれらの置換式よりも早く収束することを示す収束境界を得る。
我々は, 同期シャッフル法と呼ばれるアルゴリズムの修正を提案し, ほぼ均一な条件下では, 下界よりも収束速度が速くなった。
論文 参考訳(メタデータ) (2021-10-20T02:25:25Z) - Stochastic Anderson Mixing for Nonconvex Stochastic Optimization [12.65903351047816]
Anderson Mixing (AM) は固定点反復の加速法である。
非適応最適化問題の解法として,Mixing (SAM) 方式を提案する。
論文 参考訳(メタデータ) (2021-10-04T16:26:15Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
サポートベクターマシン(SVM)は、機械学習文献で最も人気のある分類アルゴリズムの1つです。
我々はsvmをカーネルベースの重み付け手順として適用し,治療群と制御群の最大平均差を最小化する。
このトレードオフから生じる因果効果推定のバイアスを特徴づけ、提案されたSVM手順と既存のカーネルバランシング手法を結びつけます。
論文 参考訳(メタデータ) (2021-02-23T20:22:56Z) - Unsupervised Real Time Prediction of Faults Using the Support Vector
Machine [1.1852751647387592]
提案手法は,SMOトレーニングアルゴリズムを用いることで,より優れた性能が得られることを示す。
この予測モデルの分類性能は、SMOトレーニングアルゴリズムの有無にかかわらず、SVMよりもかなり優れている。
論文 参考訳(メタデータ) (2020-12-30T04:27:10Z) - Equipment Failure Analysis for Oil and Gas Industry with an Ensemble
Predictive Model [0.0]
提案手法は,SMOトレーニングアルゴリズムを用いることで,より優れた性能が得られることを示す。
この予測モデルの分類性能は、SMOトレーニングアルゴリズムの有無にかかわらず、SVMよりもかなり優れている。
論文 参考訳(メタデータ) (2020-12-30T04:14:15Z) - AML-SVM: Adaptive Multilevel Learning with Support Vector Machines [0.0]
本稿では非線形SVMのための適応型多段階学習フレームワークを提案する。
改良プロセス全体の分類品質を改善し、マルチスレッド並列処理を活用して性能を向上する。
論文 参考訳(メタデータ) (2020-11-05T00:17:02Z) - Dual Stochastic Natural Gradient Descent and convergence of interior
half-space gradient approximations [0.0]
多項ロジスティック回帰(MLR)は統計学や機械学習で広く使われている。
勾配降下(SGD)は、ビッグデータシナリオにおけるMLRモデルのパラメータを決定する最も一般的な手法である。
論文 参考訳(メタデータ) (2020-01-19T00:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。