論文の概要: Online Continual Learning on Sequences
- arxiv url: http://arxiv.org/abs/2003.09114v1
- Date: Fri, 20 Mar 2020 05:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 21:50:48.593661
- Title: Online Continual Learning on Sequences
- Title(参考訳): シーケンシャルなオンライン連続学習
- Authors: German I. Parisi and Vincenzo Lomonaco
- Abstract要約: オンライン連続学習(オンライン連続学習、英: Online Continuousal Learning、OCL)とは、トレーニングサンプルを再考することなく、連続したデータストリームから時間とともに学習できるシステムである。
OCLに対処する機械学習モデルは、新しい入力ストリームから学習する際に、隠れた表現が破壊されるか、完全に上書きされるような、テキスト触媒的忘れを軽減する必要がある。
- 参考スコア(独自算出の注目度): 9.603184477806954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online continual learning (OCL) refers to the ability of a system to learn
over time from a continuous stream of data without having to revisit previously
encountered training samples. Learning continually in a single data pass is
crucial for agents and robots operating in changing environments and required
to acquire, fine-tune, and transfer increasingly complex representations from
non-i.i.d. input distributions. Machine learning models that address OCL must
alleviate \textit{catastrophic forgetting} in which hidden representations are
disrupted or completely overwritten when learning from streams of novel input.
In this chapter, we summarize and discuss recent deep learning models that
address OCL on sequential input through the use (and combination) of synaptic
regularization, structural plasticity, and experience replay. Different
implementations of replay have been proposed that alleviate catastrophic
forgetting in connectionists architectures via the re-occurrence of (latent
representations of) input sequences and that functionally resemble mechanisms
of hippocampal replay in the mammalian brain. Empirical evidence shows that
architectures endowed with experience replay typically outperform architectures
without in (online) incremental learning tasks.
- Abstract(参考訳): オンライン連続学習(オンライン連続学習、英: Online Continuousal Learning、OCL)とは、トレーニングサンプルを再考することなく、連続したデータストリームから時間とともに学習できるシステムである。
単一のデータパスで継続的に学習することは、変化する環境で動作するエージェントやロボットにとって不可欠であり、非i.i.d.入力分布からますます複雑な表現を取得し、微調整し、転送する必要がある。
oclに対処する機械学習モデルは、新しい入力のストリームから学習するとき、隠れた表現が中断されたり、完全に上書きされたりする \textit{catastrophic forgetting} を緩和しなければならない。
本章では, シナプス正則化, 構造的可塑性, 経験的再生の利用(および組み合わせ)を通じて, OCLを逐次入力する最近のディープラーニングモデルを要約し, 議論する。
リプレイの異なる実装は、入力配列の再帰によってコネクショニストアーキテクチャにおける破滅的な忘れを軽減し、哺乳類の脳における海馬リプレイの機構を機能的に類似させることが提案されている。
経験を積んだアーキテクチャは、(オンライン)インクリメンタルな学習タスクを伴わずに、一般的にアーキテクチャを上回ります。
関連論文リスト
- Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning [13.836798036474143]
Federated Class Continual Learningにおける大きな課題は、破滅的な忘れ方だ。
本研究では拡散モデルに基づく新しいデータ再生手法を提案する。
我々の手法は既存のベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2024-09-02T10:07:24Z) - Learning Object-Centric Representation via Reverse Hierarchy Guidance [73.05170419085796]
OCL(Object-Centric Learning)は、ニューラルネットワークが視覚的なシーンで個々のオブジェクトを識別できるようにする。
RHGNetは、トレーニングと推論プロセスにおいて、さまざまな方法で機能するトップダウンパスを導入している。
我々のモデルは、よく使われる複数のデータセット上でSOTA性能を達成する。
論文 参考訳(メタデータ) (2024-05-17T07:48:27Z) - Reawakening knowledge: Anticipatory recovery from catastrophic interference via structured training [24.719121340143978]
固定された繰り返しシーケンスで文書が循環的に提示される構造化された非IID環境で、ニューラルネットワークのトレーニングダイナミクスを探索する。
過度にパラメータ化されたニューラルネットワークは破滅的な干渉から回復できることがわかった。
論文 参考訳(メタデータ) (2024-03-14T17:51:54Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
本稿では,強化学習による巧妙な操作スキルの学習を効率化するシステムを提案する。
我々のアプローチの主な考え方は、サンプル効率のRLとリプレイバッファブートストラップの最近の進歩の統合である。
本システムでは,実世界の学習サイクルを,模倣に基づくピックアップポリシを通じて学習されたリセットを組み込むことで完遂する。
論文 参考訳(メタデータ) (2023-09-06T19:05:31Z) - OER: Offline Experience Replay for Continual Offline Reinforcement Learning [25.985985377992034]
エージェントには、事前にコンパイルされたオフラインデータセットのシーケンスを通じて、新たなスキルを継続的に学習することが望ましい。
本稿では、エージェントが一連のオフライン強化学習タスクを学習する、新しい設定である連続オフライン強化学習(CORL)を定式化する。
本稿では,リプレイバッファを構築するためのモデルベースエクスペリエンス選択手法を提案する。
論文 参考訳(メタデータ) (2023-05-23T08:16:44Z) - Learning an evolved mixture model for task-free continual learning [11.540150938141034]
タスク自由連続学習(TFCL)では,非定常データストリーム上で,明示的なタスク情報を持たないモデルを訓練する。
メモリ過負荷を回避するため,記憶されているサンプルを選択的に削除する2つの単純なドロップアウト機構を導入する。
論文 参考訳(メタデータ) (2022-07-11T16:01:27Z) - Decoupling Knowledge from Memorization: Retrieval-augmented Prompt
Learning [113.58691755215663]
一般化と記憶のバランスをとるためにRetroPromptを開発した。
バニラプロンプト学習とは対照的に、RetroPromptはトレーニングインスタンスからオープンブックナレッジストアを構築する。
大規模な実験により、RetroPromptは、数ショットとゼロショットの両方で、より良いパフォーマンスを得ることができることが示されている。
論文 参考訳(メタデータ) (2022-05-29T16:07:30Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Continual Prototype Evolution: Learning Online from Non-Stationary Data
Streams [42.525141660788]
任意の時点で学習と予測を可能にするシステムを導入する。
継続的な学習における主要な仕事とは対照的に、データストリームはオンライン形式で処理される。
我々は,高度にバランスの取れない3つのデータストリームを含む8つのベンチマークで,最先端のパフォーマンスを顕著に比較した。
論文 参考訳(メタデータ) (2020-09-02T09:39:26Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。