論文の概要: Learning an evolved mixture model for task-free continual learning
- arxiv url: http://arxiv.org/abs/2207.05080v1
- Date: Mon, 11 Jul 2022 16:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 05:14:47.100832
- Title: Learning an evolved mixture model for task-free continual learning
- Title(参考訳): タスクフリー連続学習のための進化的混合モデル学習
- Authors: Fei Ye and Adrian G. Bors
- Abstract要約: タスク自由連続学習(TFCL)では,非定常データストリーム上で,明示的なタスク情報を持たないモデルを訓練する。
メモリ過負荷を回避するため,記憶されているサンプルを選択的に削除する2つの単純なドロップアウト機構を導入する。
- 参考スコア(独自算出の注目度): 11.540150938141034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, continual learning (CL) has gained significant interest because it
enables deep learning models to acquire new knowledge without forgetting
previously learnt information. However, most existing works require knowing the
task identities and boundaries, which is not realistic in a real context. In
this paper, we address a more challenging and realistic setting in CL, namely
the Task-Free Continual Learning (TFCL) in which a model is trained on
non-stationary data streams with no explicit task information. To address TFCL,
we introduce an evolved mixture model whose network architecture is dynamically
expanded to adapt to the data distribution shift. We implement this expansion
mechanism by evaluating the probability distance between the knowledge stored
in each mixture model component and the current memory buffer using the Hilbert
Schmidt Independence Criterion (HSIC). We further introduce two simple dropout
mechanisms to selectively remove stored examples in order to avoid memory
overload while preserving memory diversity. Empirical results demonstrate that
the proposed approach achieves excellent performance.
- Abstract(参考訳): 近年,従来の学習情報を忘れることなく,深層学習モデルで新たな知識を習得できることから,継続学習(CL)が注目されている。
しかし、既存の仕事の多くはタスクのアイデンティティと境界を知る必要があるが、現実の状況では現実的ではない。
本稿では,clにおいて,明示的なタスク情報を持たない非定常データストリーム上でモデルをトレーニングするタスクフリー連続学習(tfcl)という,より挑戦的で現実的な設定について述べる。
tfclに対処するために,データ分散シフトに対応するために,ネットワークアーキテクチャを動的に拡張した混合モデルを提案する。
本研究では,Hilbert Schmidt Independence Criterion (HSIC) を用いて,各混合モデルコンポーネントに格納されている知識と現在のメモリバッファとの確率距離を評価することで,この拡張機構を実装した。
さらに,メモリの多様性を保ちながらメモリ過負荷を回避するため,ストアドサンプルを選択的に削除する2つの簡単なドロップアウト機構を導入する。
実験により,提案手法が優れた性能を発揮することを示す。
関連論文リスト
- Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
本稿では,視覚言語モデルを用いた漸進的学習における長期的忘れを緩和するパラメータ効率の連続学習フレームワークを提案する。
提案手法では,Mixture-of-Experts (MoE)アダプタの統合により,事前学習したCLIPモデルの動的拡張を行う。
視覚言語モデルのゼロショット認識能力を維持するために,分布判別オートセレクタを提案する。
論文 参考訳(メタデータ) (2024-03-18T08:00:23Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
本稿では,継続的学習のための適応型分類基準を用いた教師付きコントラスト学習フレームワークを提案する。
実験により, CFLは最先端の性能を達成し, 分類基準に比べて克服する能力が強いことが示された。
論文 参考訳(メタデータ) (2023-05-20T19:22:40Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - Task-Free Continual Learning via Online Discrepancy Distance Learning [11.540150938141034]
本稿では,来訪したサンプルとモデルトレーニングに利用可能な情報全体との差分距離に基づく一般化境界を提供する,新しい理論解析フレームワークを開発する。
この理論モデルに着想を得て,混合モデルに対する動的成分展開機構,すなわちオンライン離散距離学習(ODDL)によって実現された新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-12T20:44:09Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Continual Variational Autoencoder Learning via Online Cooperative
Memorization [11.540150938141034]
変分オートエンコーダ(VAE)は連続的な学習分類タスクでうまく使われている。
しかし、連続学習で学んだクラスやデータベースに対応する仕様で画像を生成する能力はよく理解されていない。
我々は、CLを動的最適輸送問題として定式化する新しい理論フレームワークを開発する。
次に,新しいメモリバッファリング手法,すなわちオンライン協調記憶(OCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-20T18:19:27Z) - Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet
Process [15.350366047108103]
生涯学習における最近の研究成果は、タスクの増加に対応するために、モデルの混合を成長させることが提案されている。
本研究では,データの確率的表現間の差分距離に基づいてリスク境界を導出することにより,生涯学習モデルの理論的解析を行う。
理論解析に着想を得て, 生涯無限混合モデル (LIMix) と呼ばれる新しい生涯学習手法を導入する。
論文 参考訳(メタデータ) (2021-08-25T21:06:20Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
分類のための連続学習のためのハイブリッド生成識別手法であるHCLを提案する。
フローは、データの配布を学習し、分類を行い、タスクの変更を特定し、忘れることを避けるために使用される。
本研究では,スプリット-MNIST,スプリット-CIFAR,SVHN-MNISTなどの連続学習ベンチマークにおいて,HCLの強い性能を示す。
論文 参考訳(メタデータ) (2021-06-24T05:19:26Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。