Effect of environment in Heisenberg XYZ spin model
- URL: http://arxiv.org/abs/2003.09173v2
- Date: Mon, 23 Mar 2020 13:41:21 GMT
- Title: Effect of environment in Heisenberg XYZ spin model
- Authors: Indrajith. V.S and R. Sankaranarayanan
- Abstract summary: It is shown that if the system is allowed to exchange energy with environment, the initial state evolves and settles down to uncorrelated state in limit.
We have also demonstrated that fidelity based measurement induced non-locality is a useful quantity in characterizing correlated quantum states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum correlation of bipartite states (beyond entanglement) in presence of
environment is studied for Heisenberg XYZ spin system. It is shown that if the
system is allowed to exchange energy with environment, the initial state
evolves and settles down to uncorrelated state in asymptotic limit. We have
also demonstrated that fidelity based measurement induced non-locality is a
useful quantity in characterizing correlated quantum states.
Related papers
- Quantum concentration inequalities and equivalence of the thermodynamical ensembles: an optimal mass transport approach [4.604003661048267]
We prove new concentration inequalities for quantum spin systems.
Our results do not require the spins to be arranged in a regular lattice.
We introduce a local W1 distance, which quantifies the distinguishability of two states with respect to local observables.
arXiv Detail & Related papers (2024-03-27T14:32:03Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - The modified logarithmic Sobolev inequality for quantum spin systems:
classical and commuting nearest neighbour interactions [2.148535041822524]
We prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing.
We show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosman's complete analyticity of the free-energy at equilibrium.
Our results have wide-ranging applications in quantum information.
arXiv Detail & Related papers (2020-09-24T16:54:06Z) - Quantum Dynamics of Collective Spin States in a Thermal Gas [0.0]
Ensembles of alkali or noble-gas atoms at room temperature are widely applied in quantum optics and metrology.
We present a fully-quantum description of the effect of atomic diffusion in these systems.
arXiv Detail & Related papers (2020-06-07T19:39:24Z) - Intrinsic decoherence effects on measurement-induced nonlocality [1.5630592429258865]
We study the dynamics of entanglement quantified by the concurrence and measurement-induced nonlocality (MIN) based on Hilbert-Schmidt norm.
We show that the existence of quantum correlation captured by MIN in the unentangled state.
arXiv Detail & Related papers (2020-05-13T16:18:25Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.