3dDepthNet: Point Cloud Guided Depth Completion Network for Sparse Depth
and Single Color Image
- URL: http://arxiv.org/abs/2003.09175v1
- Date: Fri, 20 Mar 2020 10:19:32 GMT
- Title: 3dDepthNet: Point Cloud Guided Depth Completion Network for Sparse Depth
and Single Color Image
- Authors: Rui Xiang, Feng Zheng, Huapeng Su, Zhe Zhang
- Abstract summary: Our network offers a novel 3D-to-2D coarse-to-fine dual densification design that is both accurate and lightweight.
Experiments on the KITTI dataset show our network achieves state-of-art accuracy while being more efficient.
- Score: 42.13930269841654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an end-to-end deep learning network named
3dDepthNet, which produces an accurate dense depth image from a single pair of
sparse LiDAR depth and color image for robotics and autonomous driving tasks.
Based on the dimensional nature of depth images, our network offers a novel
3D-to-2D coarse-to-fine dual densification design that is both accurate and
lightweight. Depth densification is first performed in 3D space via point cloud
completion, followed by a specially designed encoder-decoder structure that
utilizes the projected dense depth from 3D completion and the original RGB-D
images to perform 2D image completion. Experiments on the KITTI dataset show
our network achieves state-of-art accuracy while being more efficient. Ablation
and generalization tests prove that each module in our network has positive
influences on the final results, and furthermore, our network is resilient to
even sparser depth.
Related papers
- A Two-Stage Masked Autoencoder Based Network for Indoor Depth Completion [10.519644854849098]
We propose a two-step Transformer-based network for indoor depth completion.
Our proposed network achieves the state-of-the-art performance on the Matterport3D dataset.
In addition, to validate the importance of the depth completion task, we apply our methods to indoor 3D reconstruction.
arXiv Detail & Related papers (2024-06-14T07:42:27Z) - Pyramid Deep Fusion Network for Two-Hand Reconstruction from RGB-D Images [11.100398985633754]
We propose an end-to-end framework for recovering dense meshes for both hands.
Our framework employs ResNet50 and PointNet++ to derive features from RGB and point cloud.
We also introduce a novel pyramid deep fusion network (PDFNet) to aggregate features at different scales.
arXiv Detail & Related papers (2023-07-12T09:33:21Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
We design a simple yet effective neural network block that learns to extract joint 2D and 3D features.
Specifically, the block consists of two domain-specific sub-networks that apply 2D convolution on image pixels and continuous convolution on 3D points.
arXiv Detail & Related papers (2020-12-22T22:58:29Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNet is a novel end-to-end deep learning framework for representing 3D point clouds.
It converts an irregular 3D point cloud into a regular 2D color image, named point geometry image (PGI)
In contrast to conventional regular representation modalities based on multi-view projection and voxelization, the proposed representation is differentiable and reversible.
arXiv Detail & Related papers (2020-12-05T13:19:55Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.