A Two-Stage Masked Autoencoder Based Network for Indoor Depth Completion
- URL: http://arxiv.org/abs/2406.09792v1
- Date: Fri, 14 Jun 2024 07:42:27 GMT
- Title: A Two-Stage Masked Autoencoder Based Network for Indoor Depth Completion
- Authors: Kailai Sun, Zhou Yang, Qianchuan Zhao,
- Abstract summary: We propose a two-step Transformer-based network for indoor depth completion.
Our proposed network achieves the state-of-the-art performance on the Matterport3D dataset.
In addition, to validate the importance of the depth completion task, we apply our methods to indoor 3D reconstruction.
- Score: 10.519644854849098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth images have a wide range of applications, such as 3D reconstruction, autonomous driving, augmented reality, robot navigation, and scene understanding. Commodity-grade depth cameras are hard to sense depth for bright, glossy, transparent, and distant surfaces. Although existing depth completion methods have achieved remarkable progress, their performance is limited when applied to complex indoor scenarios. To address these problems, we propose a two-step Transformer-based network for indoor depth completion. Unlike existing depth completion approaches, we adopt a self-supervision pre-training encoder based on the masked autoencoder to learn an effective latent representation for the missing depth value; then we propose a decoder based on a token fusion mechanism to complete (i.e., reconstruct) the full depth from the jointly RGB and incomplete depth image. Compared to the existing methods, our proposed network, achieves the state-of-the-art performance on the Matterport3D dataset. In addition, to validate the importance of the depth completion task, we apply our methods to indoor 3D reconstruction. The code, dataset, and demo are available at https://github.com/kailaisun/Indoor-Depth-Completion.
Related papers
- GAC-Net_Geometric and attention-based Network for Depth Completion [10.64600095082433]
This paper proposes a depth completion network combining channel attention mechanism and 3D global feature perception (CGA-Net)
Experiments on the KITTI depth completion dataset show that CGA-Net can significantly improve the prediction accuracy of dense depth maps.
arXiv Detail & Related papers (2025-01-14T10:24:20Z) - DepthLab: From Partial to Complete [80.58276388743306]
Missing values remain a common challenge for depth data across its wide range of applications.
This work bridges this gap with DepthLab, a foundation depth inpainting model powered by image diffusion priors.
Our approach proves its worth in various downstream tasks, including 3D scene inpainting, text-to-3D scene generation, sparse-view reconstruction with DUST3R, and LiDAR depth completion.
arXiv Detail & Related papers (2024-12-24T04:16:38Z) - RigNet++: Semantic Assisted Repetitive Image Guided Network for Depth
Completion [31.70022495622075]
We explore a repetitive design in our image guided network to gradually and sufficiently recover depth values.
In the former branch, we design a dense repetitive hourglass network (DRHN) to extract discriminative image features of complex environments.
In the latter branch, we present a repetitive guidance (RG) module based on dynamic convolution, in which an efficient convolution factorization is proposed to reduce the complexity.
In addition, we propose a region-aware spatial propagation network (RASPN) for further depth refinement based on the semantic prior constraint.
arXiv Detail & Related papers (2023-09-01T09:11:20Z) - A Real-Time Online Learning Framework for Joint 3D Reconstruction and
Semantic Segmentation of Indoor Scenes [87.74952229507096]
This paper presents a real-time online vision framework to jointly recover an indoor scene's 3D structure and semantic label.
Given noisy depth maps, a camera trajectory, and 2D semantic labels at train time, the proposed neural network learns to fuse the depth over frames with suitable semantic labels in the scene space.
arXiv Detail & Related papers (2021-08-11T14:29:01Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
We design a simple yet effective neural network block that learns to extract joint 2D and 3D features.
Specifically, the block consists of two domain-specific sub-networks that apply 2D convolution on image pixels and continuous convolution on 3D points.
arXiv Detail & Related papers (2020-12-22T22:58:29Z) - SelfDeco: Self-Supervised Monocular Depth Completion in Challenging
Indoor Environments [50.761917113239996]
We present a novel algorithm for self-supervised monocular depth completion.
Our approach is based on training a neural network that requires only sparse depth measurements and corresponding monocular video sequences without dense depth labels.
Our self-supervised algorithm is designed for challenging indoor environments with textureless regions, glossy and transparent surface, non-Lambertian surfaces, moving people, longer and diverse depth ranges and scenes captured by complex ego-motions.
arXiv Detail & Related papers (2020-11-10T08:55:07Z) - 3dDepthNet: Point Cloud Guided Depth Completion Network for Sparse Depth
and Single Color Image [42.13930269841654]
Our network offers a novel 3D-to-2D coarse-to-fine dual densification design that is both accurate and lightweight.
Experiments on the KITTI dataset show our network achieves state-of-art accuracy while being more efficient.
arXiv Detail & Related papers (2020-03-20T10:19:32Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.