論文の概要: Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks
- arxiv url: http://arxiv.org/abs/2003.09514v3
- Date: Sun, 28 Feb 2021 08:43:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 22:51:54.085114
- Title: Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いた高速対称性拡散型画像登録
- Authors: Tony C.W. Mok, Albert C.S. Chung
- Abstract要約: 本稿では,新しい非教師付き対称画像登録手法を提案する。
大規模脳画像データセットを用いた3次元画像登録法について検討した。
- 参考スコア(独自算出の注目度): 11.4219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffeomorphic deformable image registration is crucial in many medical image
studies, as it offers unique, special properties including topology
preservation and invertibility of the transformation. Recent deep
learning-based deformable image registration methods achieve fast image
registration by leveraging a convolutional neural network (CNN) to learn the
spatial transformation from the synthetic ground truth or the similarity
metric. However, these approaches often ignore the topology preservation of the
transformation and the smoothness of the transformation which is enforced by a
global smoothing energy function alone. Moreover, deep learning-based
approaches often estimate the displacement field directly, which cannot
guarantee the existence of the inverse transformation. In this paper, we
present a novel, efficient unsupervised symmetric image registration method
which maximizes the similarity between images within the space of diffeomorphic
maps and estimates both forward and inverse transformations simultaneously. We
evaluate our method on 3D image registration with a large scale brain image
dataset. Our method achieves state-of-the-art registration accuracy and running
time while maintaining desirable diffeomorphic properties.
- Abstract(参考訳): 異形変形可能な画像登録は、トポロジー保存や変換の可逆性を含む特別な特性を提供するため、多くの医学画像研究において重要である。
近年の深層学習に基づく変形可能な画像登録法は、畳み込みニューラルネットワーク(CNN)を利用して、合成基底真理や類似度メートル法から空間変換を学習することにより、高速な画像登録を実現する。
しかし、これらのアプローチは、大域的平滑化エネルギー関数のみによって強制される変換のトポロジー保存と変換の滑らかさをしばしば無視する。
さらに、深層学習に基づくアプローチは、逆変換の存在を保証できない変位場を直接推定することが多い。
本稿では, 微分写像空間内の画像間の類似性を最大化し, 前方および逆変換を同時に推定する, 効率的な非教師なし対称画像登録手法を提案する。
大規模脳画像データセットを用いた3次元画像登録法の評価を行った。
本手法は,所望の微分特性を維持しつつ,最先端の登録精度と走行時間を実現する。
関連論文リスト
- Fast Diffeomorphic Image Registration using Patch based Fully Convolutional Networks [5.479932919974457]
本稿では,高速な微分画像登録のための,教師なし学習に基づく完全畳み込みネットワーク(FCN)フレームワークを提案する。
3つの異なるT1強調MRI(T1w MRI)データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-04-05T17:46:38Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
変形可能な画像登録のための新しい微分型学習自由アプローチを提案する。
提案するアーキテクチャは設計上は単純で,各解像度で移動像を順次ワープし,最終的に固定像に整列する。
システム全体はエンドツーエンドで、スクラッチから各2つのイメージに最適化されている。
論文 参考訳(メタデータ) (2022-02-01T15:17:17Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - Dual-Flow Transformation Network for Deformable Image Registration with
Region Consistency Constraint [95.30864269428808]
現在のディープラーニング(DL)ベースの画像登録アプローチは、畳み込みニューラルネットワークを利用して、ある画像から別の画像への空間変換を学習する。
一対のイメージ内のROIの類似性を最大化する領域整合性制約を持つ新しいデュアルフロー変換ネットワークを提案する。
4つの公開3次元MRIデータセットを用いた実験により,提案手法は精度と一般化において最高の登録性能が得られることを示した。
論文 参考訳(メタデータ) (2021-12-04T05:30:44Z) - MDReg-Net: Multi-resolution diffeomorphic image registration using fully
convolutional networks with deep self-supervision [2.0178765779788486]
完全畳み込みネットワーク(FCN)を用いて、登録する画像のペア間の空間変換を学習するための微分型画像登録アルゴリズムを提案する。
このネットワークは、固定された動画像と歪んだ動画像間の画像ワイド類似度メトリックを最大化することにより、一対の画像間の微分同相空間変換を推定するように訓練されている。
高分解能3次元構造脳磁気共鳴(MR)画像の登録実験の結果,本手法で訓練した画像登録ネットワークは,数秒で頑健で微分型画像登録結果が得られることが示された。
論文 参考訳(メタデータ) (2020-10-04T02:00:37Z) - Image-to-image Mapping with Many Domains by Sparse Attribute Transfer [71.28847881318013]
教師なし画像と画像の変換は、2つの領域間の一対のマッピングを、ポイント間の既知のペアワイズ対応なしで学習することで構成される。
現在の慣例は、サイクル一貫性のあるGANでこのタスクにアプローチすることです。
そこで本研究では,ジェネレータを直接,潜在層における単純なスパース変換に制限する代替手法を提案する。
論文 参考訳(メタデータ) (2020-06-23T19:52:23Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
本稿では, 自動文脈戦略を用いて変形場を段階的に洗練する幼児向け深層登録ネットワークを提案する。
本手法は, 繰り返し変形改善のために1つのネットワークを複数回呼び出すことにより, 変形場を推定する。
現状登録法との比較実験の結果, 変形場の滑らかさを保ちながら, 高い精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-19T06:00:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。