Fault-tolerant Coherent H-infinity Control for Linear Quantum Systems
- URL: http://arxiv.org/abs/2003.09609v1
- Date: Sat, 21 Mar 2020 09:20:15 GMT
- Title: Fault-tolerant Coherent H-infinity Control for Linear Quantum Systems
- Authors: Yanan Liu, Daoyi Dong, Ian R. Petersen, Qing Gao, Steven X. Ding,
Shota Yokoyama and Hidehiro Yonezawa
- Abstract summary: This paper is to design a coherent feedback controller for a class of linear quantum systems suffering from Markovian jumping faults.
For real applications of the developed fault-tolerant control strategy, we present a linear quantum system example from quantum optics.
- Score: 12.099257242356618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robustness and reliability are two key requirements for developing practical
quantum control systems. The purpose of this paper is to design a coherent
feedback controller for a class of linear quantum systems suffering from
Markovian jumping faults so that the closed-loop quantum system has both fault
tolerance and H-infinity disturbance attenuation performance. This paper first
extends the physical realization conditions from the time-invariant case to the
time-varying case for linear stochastic quantum systems. By relating the fault
tolerant H-infinity control problem to the dissipation properties and the
solutions of Riccati differential equations, an H-infinity controller for the
quantum system is then designed by solving a set of linear matrix inequalities
(LMIs). In particular, an algorithm is employed to introduce additional noises
and to construct the corresponding input matrices to ensure the physical
realizability of the quantum controller. For real applications of the developed
fault-tolerant control strategy, we present a linear quantum system example
from quantum optics, where the amplitude of the pumping field randomly jumps
among different values. It is demonstrated that a quantum H-infinity controller
can be designed and implemented using some basic optical components to achieve
the desired control goal.
Related papers
- Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Differentiable master equation solver for quantum device characterisation [0.0]
Differentiable models of physical systems provide a powerful platform for gradient-based algorithms.
Quantum systems present a particular challenge for such characterisation and control.
We present a versatile differentiable quantum master equation solver, and incorporate this solver into a framework for device characterisation.
arXiv Detail & Related papers (2024-03-07T17:23:56Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quadratic-exponential coherent feedback control of linear quantum
stochastic systems [2.0508733018954843]
This paper considers a risk-sensitive optimal control problem for a field-mediated interconnection of a quantum plant with a coherent quantum controller.
The control objective is to internally stabilize the closed-loop system Wiener and minimize the infinite-horizon growth rate of a quadratic-exponential functional.
arXiv Detail & Related papers (2023-08-07T21:31:05Z) - Coherent quantum LQG controllers with Luenberger dynamics [2.0508733018954843]
This paper is concerned with the coherent quantum linear-quadratic-Gaussian control problem of minimising an infinite-horizon mean square cost for a measurement-free field-mediated interconnection of a quantum plant and a stabilising quantum controller.
arXiv Detail & Related papers (2022-11-14T03:48:11Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Numerical estimation of reachable and controllability sets for a
two-level open quantum system driven by coherent and incoherent controls [77.34726150561087]
The article considers a two-level open quantum system governed by the Gorini--Kossakowski--Lindblad--Sudarshan master equation.
The system is analyzed using Bloch parametrization of the system's density matrix.
arXiv Detail & Related papers (2021-06-18T14:23:29Z) - Fusion-based quantum computation [43.642915252379815]
Fusion-based quantum computing (FBQC) is a model of universal quantum computation in which entangling measurements, called fusions, are performed on qubits of small constant-sized entangled resource states.
We introduce a stabilizer formalism for analyzing fault tolerance and computation in these schemes.
This framework naturally captures the error structure that arises in certain physical systems for quantum computing, such as photonics.
arXiv Detail & Related papers (2021-01-22T20:00:22Z) - A homotopy approach to coherent quantum LQG control synthesis using
discounted performance criteria [2.0508733018954843]
This paper is concerned with linear-quadratic-Gaussian (LQG) control for a field-mediated feedback connection of a plant and a coherent (measurement-free) controller.
The control objective is to make the closed-loop system internally stable and to minimize the infinite-horizon cost involving the plant variables.
arXiv Detail & Related papers (2020-02-06T18:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.