Coherent quantum LQG controllers with Luenberger dynamics
- URL: http://arxiv.org/abs/2211.07097v1
- Date: Mon, 14 Nov 2022 03:48:11 GMT
- Title: Coherent quantum LQG controllers with Luenberger dynamics
- Authors: Igor G. Vladimirov, Ian R. Petersen
- Abstract summary: This paper is concerned with the coherent quantum linear-quadratic-Gaussian control problem of minimising an infinite-horizon mean square cost for a measurement-free field-mediated interconnection of a quantum plant and a stabilising quantum controller.
- Score: 2.0508733018954843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is concerned with the coherent quantum linear-quadratic-Gaussian
control problem of minimising an infinite-horizon mean square cost for a
measurement-free field-mediated interconnection of a quantum plant with a
stabilising quantum controller. The plant and the controller are multimode open
quantum harmonic oscillators, governed by linear quantum stochastic
differential equations and coupled to each other and the external multichannel
bosonic fields in the vacuum state. We discuss an interplay between the quantum
physical realizability conditions and the Luenberger structure associated with
the classical separation principle. This leads to a quadratic constraint on the
controller gain matrices, which is formulated in the framework of a swapping
transformation for the conjugate positions and momenta in the canonical
representation of the controller variables. For the class of coherent quantum
controllers with the Luenberger dynamics, we obtain first-order necessary
conditions of optimality in the form of algebraic equations, involving a
matrix-valued Lagrange multiplier.
Related papers
- Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers [1.6318838452579472]
The paper presents a variational quantum algorithm to solve initial-boundary value problems described by partial differential equations.
The approach uses classical/quantum hardware that is well suited for quantum computers of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2024-02-28T18:19:33Z) - Quadratic-exponential coherent feedback control of linear quantum
stochastic systems [2.0508733018954843]
This paper considers a risk-sensitive optimal control problem for a field-mediated interconnection of a quantum plant with a coherent quantum controller.
The control objective is to internally stabilize the closed-loop system Wiener and minimize the infinite-horizon growth rate of a quadratic-exponential functional.
arXiv Detail & Related papers (2023-08-07T21:31:05Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Decoherence quantification through commutation relations decay for open
quantum harmonic oscillators [2.0508733018954843]
We consider the exponentially fast decay in the two-point commutator matrix of the system variables as a manifestation of quantum decoherence.
These features are exploited as nonclassical resources in quantum computation and quantum information processing technologies.
arXiv Detail & Related papers (2022-08-04T08:57:31Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - A homotopy approach to coherent quantum LQG control synthesis using
discounted performance criteria [2.0508733018954843]
This paper is concerned with linear-quadratic-Gaussian (LQG) control for a field-mediated feedback connection of a plant and a coherent (measurement-free) controller.
The control objective is to make the closed-loop system internally stable and to minimize the infinite-horizon cost involving the plant variables.
arXiv Detail & Related papers (2020-02-06T18:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.