Quadratic-exponential coherent feedback control of linear quantum
stochastic systems
- URL: http://arxiv.org/abs/2308.03918v1
- Date: Mon, 7 Aug 2023 21:31:05 GMT
- Title: Quadratic-exponential coherent feedback control of linear quantum
stochastic systems
- Authors: Igor G. Vladimirov, Ian R. Petersen
- Abstract summary: This paper considers a risk-sensitive optimal control problem for a field-mediated interconnection of a quantum plant with a coherent quantum controller.
The control objective is to internally stabilize the closed-loop system Wiener and minimize the infinite-horizon growth rate of a quadratic-exponential functional.
- Score: 2.0508733018954843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers a risk-sensitive optimal control problem for a
field-mediated interconnection of a quantum plant with a coherent
(measurement-free) quantum controller. The plant and the controller are
multimode open quantum harmonic oscillators governed by linear quantum
stochastic differential equations, which are coupled to each other and driven
by multichannel quantum Wiener processes modelling the external bosonic fields.
The control objective is to internally stabilize the closed-loop system and
minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential
functional which penalizes the plant variables and the controller output. We
obtain first-order necessary conditions of optimality for this problem by
computing the partial Frechet derivatives of the cost functional with respect
to the energy and coupling matrices of the controller in frequency domain and
state space. An infinitesimal equivalence between the risk-sensitive and
weighted coherent quantum LQG control problems is also established. In addition
to variational methods, we employ spectral factorizations and infinite cascades
of auxiliary classical systems. Their truncations are applicable to numerical
optimization algorithms (such as the gradient descent) for coherent quantum
risk-sensitive feedback synthesis.
Related papers
- Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers [1.6318838452579472]
The paper presents a variational quantum algorithm to solve initial-boundary value problems described by partial differential equations.
The approach uses classical/quantum hardware that is well suited for quantum computers of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2024-02-28T18:19:33Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Coherent quantum LQG controllers with Luenberger dynamics [2.0508733018954843]
This paper is concerned with the coherent quantum linear-quadratic-Gaussian control problem of minimising an infinite-horizon mean square cost for a measurement-free field-mediated interconnection of a quantum plant and a stabilising quantum controller.
arXiv Detail & Related papers (2022-11-14T03:48:11Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Decoherence quantification through commutation relations decay for open
quantum harmonic oscillators [2.0508733018954843]
We consider the exponentially fast decay in the two-point commutator matrix of the system variables as a manifestation of quantum decoherence.
These features are exploited as nonclassical resources in quantum computation and quantum information processing technologies.
arXiv Detail & Related papers (2022-08-04T08:57:31Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Numerical estimation of reachable and controllability sets for a
two-level open quantum system driven by coherent and incoherent controls [77.34726150561087]
The article considers a two-level open quantum system governed by the Gorini--Kossakowski--Lindblad--Sudarshan master equation.
The system is analyzed using Bloch parametrization of the system's density matrix.
arXiv Detail & Related papers (2021-06-18T14:23:29Z) - Fault-tolerant Coherent H-infinity Control for Linear Quantum Systems [12.099257242356618]
This paper is to design a coherent feedback controller for a class of linear quantum systems suffering from Markovian jumping faults.
For real applications of the developed fault-tolerant control strategy, we present a linear quantum system example from quantum optics.
arXiv Detail & Related papers (2020-03-21T09:20:15Z) - A homotopy approach to coherent quantum LQG control synthesis using
discounted performance criteria [2.0508733018954843]
This paper is concerned with linear-quadratic-Gaussian (LQG) control for a field-mediated feedback connection of a plant and a coherent (measurement-free) controller.
The control objective is to make the closed-loop system internally stable and to minimize the infinite-horizon cost involving the plant variables.
arXiv Detail & Related papers (2020-02-06T18:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.