論文の概要: Invariant Rationalization
- arxiv url: http://arxiv.org/abs/2003.09772v1
- Date: Sun, 22 Mar 2020 00:50:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 05:07:27.731356
- Title: Invariant Rationalization
- Title(参考訳): 不変な合理化
- Authors: Shiyu Chang, Yang Zhang, Mo Yu, Tommi S. Jaakkola
- Abstract要約: 典型的な合理化基準、すなわち最大相互情報(MMI)は、合理性のみに基づいて予測性能を最大化する合理性を見つける。
ゲーム理論の不変な有理化基準を導入し、各環境において同じ予測器を最適にするために、有理を制約する。
理論的にも実証的にも、提案された理性は、素早い相関を除外し、異なるテストシナリオをより一般化し、人間の判断とよく一致させることができることを示す。
- 参考スコア(独自算出の注目度): 84.1861516092232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selective rationalization improves neural network interpretability by
identifying a small subset of input features -- the rationale -- that best
explains or supports the prediction. A typical rationalization criterion, i.e.
maximum mutual information (MMI), finds the rationale that maximizes the
prediction performance based only on the rationale. However, MMI can be
problematic because it picks up spurious correlations between the input
features and the output. Instead, we introduce a game-theoretic invariant
rationalization criterion where the rationales are constrained to enable the
same predictor to be optimal across different environments. We show both
theoretically and empirically that the proposed rationales can rule out
spurious correlations, generalize better to different test scenarios, and align
better with human judgments. Our data and code are available.
- Abstract(参考訳): 選択的合理化は、予測を最も説明または支持する入力特徴の小さなサブセットを識別することによって、ニューラルネットワークの解釈性を改善する。
典型的な合理化基準、すなわち最大相互情報(MMI)は、合理性のみに基づいて予測性能を最大化する合理性を見つける。
しかし、MMIは入力特徴と出力との間に急激な相関関係を取るため、問題となる可能性がある。
代わりに,ゲーム理論的な不変な有理化基準を導入することで,同じ予測者が異なる環境にまたがって最適となるように理論を制約する。
提案手法は, 理論上, 実証的に両立し, 有意な相関を除外し, 異なるテストシナリオに一般化し, 人間の判断に合致することを示す。
データとコードは利用可能です。
関連論文リスト
- Enhancing the Rationale-Input Alignment for Self-explaining
Rationalization [22.74436500022893]
DAR(textbfDiscriminatively textbfAligned textbfRationalization)と呼ばれる新しい手法を導入する。
2つの実世界のベンチマーク実験により,提案手法は説明の質を著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-12-07T07:37:15Z) - Towards Trustworthy Explanation: On Causal Rationalization [9.48539398357156]
本研究では,2つの因果デシラタに基づく合理化モデルを提案する。
提案した因果合理化の優れた性能は,実世界のレビューや医療データセットで実証されている。
論文 参考訳(メタデータ) (2023-06-25T03:34:06Z) - Unsupervised Selective Rationalization with Noise Injection [7.17737088382948]
教師なし選択的合理化は、2つの共同訓練されたコンポーネント、有理生成器と予測器をチェーンすることで、予測と共に有理性を生成する。
本稿では,生成器と予測器との間にノイズを注入することにより,有理数生成を効果的に抑制する新しい訓練手法を提案する。
新しいベンチマークを含め、さまざまなタスクにおける最先端技術に対する合理的な妥当性とタスク精度の大幅な改善を実現しています。
論文 参考訳(メタデータ) (2023-05-27T17:34:36Z) - Bounding Counterfactuals under Selection Bias [60.55840896782637]
本稿では,識別不能なクエリと識別不能なクエリの両方に対処するアルゴリズムを提案する。
選択バイアスによって引き起こされる欠如にもかかわらず、利用可能なデータの可能性は無限であることを示す。
論文 参考訳(メタデータ) (2022-07-26T10:33:10Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
我々は、数発のテキスト内学習のための合理化促進策を再考する。
我々は、出力空間における合理的サンプリングを、性能を確実に向上させるキーコンポーネントとして特定する。
有理拡張アンサンブルは既存のプロンプト手法よりも正確で解釈可能な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-07-02T06:20:57Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Understanding Interlocking Dynamics of Cooperative Rationalization [90.6863969334526]
選択的合理化(Selective rationalization)は、ニューラルネットワークの出力を予測するのに十分な入力の小さなサブセットを見つけることによって、複雑なニューラルネットワークの予測を説明する。
このような合理化パラダイムでは,モデルインターロックという大きな問題が浮かび上がっている。
A2Rと呼ばれる新しい合理化フレームワークを提案し、アーキテクチャに第3のコンポーネントを導入し、選択とは対照的にソフトアテンションによって駆動される予測器を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:39:18Z) - Rationales for Sequential Predictions [117.93025782838123]
シーケンスモデルは現代のNLPシステムにおいて重要な要素であるが、それらの予測は説明が難しい。
モデル説明は有理だが、個々のモデル予測を説明できる文脈のサブセットを考える。
この目的を近似する効率的なグリードアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-14T01:25:15Z) - SPECTRA: Sparse Structured Text Rationalization [0.0]
本稿では,因子グラフ上の制約付き推論による構造的説明を決定論的に抽出するための統一的な枠組みを提案する。
我々のアプローチは、トレーニングと合理的な正規化を非常に容易にし、概して、可視性抽出の説明に関する以前の研究よりも優れています。
論文 参考訳(メタデータ) (2021-09-09T20:39:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。