Suppressing Decoherence in Quantum Plasmonic Systems by Spectral Hole
Burning Effect
- URL: http://arxiv.org/abs/2003.10103v2
- Date: Tue, 8 Jun 2021 10:32:32 GMT
- Title: Suppressing Decoherence in Quantum Plasmonic Systems by Spectral Hole
Burning Effect
- Authors: Jia-Bin You, Xiao Xiong, Ping Bai, Zhang-Kai Zhou, Wan-Li Yang, Ching
Eng Png, Leong Chuan Kwek, Lin Wu
- Abstract summary: Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and radiative dampings.
We demonstrate the mitigation of this restrictive drawback by hybridizing a plasmonic nanocavity with an emitter ensemble with inhomogeneously-broadened transition frequencies.
- Score: 2.700635874158278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum plasmonic systems suffer from significant decoherence due to the
intrinsically large dissipative and radiative dampings. Based on our quantum
simulations via a quantum tensor network algorithm, we numerically demonstrate
the mitigation of this restrictive drawback by hybridizing a plasmonic
nanocavity with an emitter ensemble with inhomogeneously-broadened transition
frequencies. By burning two narrow spectral holes in the spectral density of
the emitter ensemble, the coherent time of Rabi oscillation for the hybrid
system is increased tenfold. With the suppressed decoherence, we move one step
further in bringing plasmonic systems into practical quantum applications.
Related papers
- Floquet interferometry of a dressed semiconductor quantum dot [0.7852714805965528]
We demonstrate state dressing in a semiconductor quantum dot tunnel-coupled to a charge reservoir.
We develop a theory based on the quantum dynamics of the Floquet ladder.
We show how the technique finds applications in the accurate electrostatic characterisation of semiconductor quantum dots.
arXiv Detail & Related papers (2024-07-19T12:20:30Z) - Enhanced coherent light-matter interaction and room-temperature quantum
yield of plasmonic resonances engineered by a chiral exceptional point [1.074267520911262]
We propose to tailor the local density of states (LDOS) of plasmonic resonances by integrating with a photonic cavity operating at a chiral exceptional point (CEP)
A quantized few-mode theory is employed to reveal that the LDOS of the proposed hybrid cavity can evolve into sub-tzian lineshape, with order-of-magnitude linewidth narrowing.
This results in the enhanced coherent light-matter interaction accompanied by the reduced dissipation of polaritonic states.
arXiv Detail & Related papers (2023-08-08T13:10:04Z) - Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a
Hybrid Light-Matter System [0.0]
We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity.
In this hybrid light-matter system the interplay between coherent and dissipative processes leads to superradiant pulses with a build-up of strong correlations.
arXiv Detail & Related papers (2023-02-16T04:34:33Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Superfluid-Mott insulator quantum phase transition in a cavity
optomagnonic system [1.9537030509970355]
The superfluid-Mott insulator quantum phase transition in a two-dimensional cavity optomagnonic array system has been studied.
The numerical results show that the increasing coupling strength and the positive detuning perturbations of the photon and the magnon favor the coherence.
arXiv Detail & Related papers (2022-01-20T09:40:31Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Non-Markovian decoherence dynamics of the hybrid quantum system with a
cavity strongly coupling to a spin ensemble: a master equation approach [1.8492669447784602]
We show how the decoherence induced by the inhomogeneous broadening is suppressed in the strong-coupling regime.
We also investigate the two-time correlations in this system to further show how quantum fluctuations manifest quantum memory.
arXiv Detail & Related papers (2020-06-29T14:13:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.