Enhanced coherent light-matter interaction and room-temperature quantum
yield of plasmonic resonances engineered by a chiral exceptional point
- URL: http://arxiv.org/abs/2308.04239v1
- Date: Tue, 8 Aug 2023 13:10:04 GMT
- Title: Enhanced coherent light-matter interaction and room-temperature quantum
yield of plasmonic resonances engineered by a chiral exceptional point
- Authors: Yuwei Lu, Haoxiang Jiang, Renming Liu
- Abstract summary: We propose to tailor the local density of states (LDOS) of plasmonic resonances by integrating with a photonic cavity operating at a chiral exceptional point (CEP)
A quantized few-mode theory is employed to reveal that the LDOS of the proposed hybrid cavity can evolve into sub-tzian lineshape, with order-of-magnitude linewidth narrowing.
This results in the enhanced coherent light-matter interaction accompanied by the reduced dissipation of polaritonic states.
- Score: 1.074267520911262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Strong dissipation of plasmonic resonances is detrimental to quantum
manipulation. To enhance the quantum coherence, we propose to tailor the local
density of states (LDOS) of plasmonic resonances by integrating with a photonic
cavity operating at a chiral exceptional point (CEP), where the phase of light
field can offer a new degree of freedom to flexibly manipulate the quantum
states. A quantized few-mode theory is employed to reveal that the LDOS of the
proposed hybrid cavity can evolve into sub-Lorentzian lineshape, with
order-of-magnitude linewidth narrowing and additionally a maximum of eightfold
enhancement compared to the usual plasmonic-photonic cavity without CEP. This
results in the enhanced coherent light-matter interaction accompanied by the
reduced dissipation of polaritonic states. Furthermore, a scattering theory
based on eigenmode decomposition is present to elucidate two mechanisms
responsible for the significant improvement of quantum yield at CEP, the
reduction of plasmonic absorption by the Fano interference and the enhancement
of cavity radiation through the superscattering. Importantly, we find the
latter allows achieving a near-unity quantum yield at room temperature; in
return, high quantum yield is beneficial to experimentally verify the enhanced
LDOS at CEP by measuring the fluorescence lifetime of a quantum emitter.
Therefore, our work demonstrates that the plasmonic resonances in
CEP-engineered environment can serve as a promising platform for exploring the
quantum states control by virtue of the non-Hermiticity of open optical
resonators and building the high-performance quantum devices for sensing,
spectroscopy, quantum information processing and quantum computing.
Related papers
- Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Quantum coherence and interference of a single moir\'e exciton in
nano-fabricated twisted semiconductor heterobilayers [7.407499080938729]
Moir'e potential acts as periodic quantum confinement for optically generated exciton, generating spatially ordered quantum system.
We have demonstrated a new method to realize the optical observation of quantum coherence and interference of a single moir'e exciton.
The observed quantum coherence and interference of moir'e exciton will facilitate potential application toward quantum technologies based on moir'e quantum systems.
arXiv Detail & Related papers (2023-09-06T10:12:09Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Dual-Resonance Enhanced Quantum Light-Matter Interactions In
Deterministically Coupled Quantum-Dot-Micopillars [5.591935162585717]
We present versatile accessing of dual-resonance conditions in deterministically coupled quantum-dot(QD)-micopillars.
We exploit the vectorial nature of the high-order cavity modes to significantly improve the excitation efficiency under the dual-resonance condition.
The dual-resonance enhanced light-matter interactions in the quantum regime provides a viable path for developing integrated quantum photonic devices.
arXiv Detail & Related papers (2021-05-12T07:33:58Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.