Non-Markovian decoherence dynamics of the hybrid quantum system with a
cavity strongly coupling to a spin ensemble: a master equation approach
- URL: http://arxiv.org/abs/2006.16064v1
- Date: Mon, 29 Jun 2020 14:13:59 GMT
- Title: Non-Markovian decoherence dynamics of the hybrid quantum system with a
cavity strongly coupling to a spin ensemble: a master equation approach
- Authors: Kai-Ting Chaing and Wei-Min Zhang
- Abstract summary: We show how the decoherence induced by the inhomogeneous broadening is suppressed in the strong-coupling regime.
We also investigate the two-time correlations in this system to further show how quantum fluctuations manifest quantum memory.
- Score: 1.8492669447784602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the recent experiments on the hybrid quantum system of a
superconducting microwave cavity coupling strongly to an inhomogeneous
broadening spin ensemble under an external driving field, we use the exact
master equation approach to investigate its non-Markovian decoherence dynamics.
Here the spin ensemble is made by negatively charged nitrogen-vacancy (NV)
defects in diamond. Our exact master equation theory for open systems depicts
the experimental decoherence results and reveals the mechanism how the
decoherence induced by the inhomogeneous broadening is suppressed in the
strong-coupling regime. Moreover, we show how the spectral hole burning
generates localized states to further suppress the cavity decoherence. We also
investigate the two-time correlations in this system to further show how
quantum fluctuations manifest quantum memory.
Related papers
- Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a
Hybrid Light-Matter System [0.0]
We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity.
In this hybrid light-matter system the interplay between coherent and dissipative processes leads to superradiant pulses with a build-up of strong correlations.
arXiv Detail & Related papers (2023-02-16T04:34:33Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Strong Coupling Quantum Thermodynamics far away from Equilibrium:
Non-Markovian Transient Quantum Heat and Work [2.542198147027801]
The strong coupling hybrid system consists of a cavity and a spin ensemble of the NV centers in diamond under external driving.
We find that the dissipation and fluctuation dynamics of the system induce the transient quantum heat current.
On the other hand, the energy renormalization and the external driving induce the quantum work power.
arXiv Detail & Related papers (2022-06-12T12:04:27Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Suppressing Decoherence in Quantum Plasmonic Systems by Spectral Hole
Burning Effect [2.700635874158278]
Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and radiative dampings.
We demonstrate the mitigation of this restrictive drawback by hybridizing a plasmonic nanocavity with an emitter ensemble with inhomogeneously-broadened transition frequencies.
arXiv Detail & Related papers (2020-03-23T07:08:03Z) - Ramsey interferometry of non-Hermitian quantum impurities [0.0]
We propose a protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself.
For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect.
arXiv Detail & Related papers (2020-03-16T18:00:36Z) - Pairing superbunching with compounded non-linearity in a resonant
transition [0.0]
We explore the role of quantum fluctuations on the behavior of the system.
The emphasis is on fields with super-Poissonian statistics manifested in photon bunching, with the case of squeezed vacuum radiation serving as a prototype of superbuching.
arXiv Detail & Related papers (2020-03-12T11:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.